李海梁

Capital Normal University (首都师范大学) , Full Professor (教授) Research Interests:Partial Differential Equations

Welcome!有朋自远方来,不亦乐乎。

研究兴趣:偏微分方程,主要涉及有流体力学、半导体器件、等粒子物理血背景的偏微分方程,以及Kinetic方程等。

  1. Lagrange structure and dynamics for solutions to the spherically symmetric compressible {N}avier-{S}tokes equations
    Guo, Zhenhua and Li, Hai-Liang and Xin, Zhouping. Comm. Math. Phys.: 2012 ,309(2) ,371--412
  2. Optimal decay rate of the non-isentropic compressible {N}avier-{S}tokes-{P}oisson system in {$Bbb R^3$}
    Zhang, Guojing and Li, Hai-Liang and Zhu, Changjiang. J. Differential Equations: 2011 ,250(2) ,866--891
  3. Optimal decay rate of the compressible {N}avier-{S}tokes-{P}oisson system in {$Bbb R^3$}
    Li, Hai-Liang and Matsumura, Akitaka and Zhang, Guojing. Arch. Ration. Mech. Anal.: 2010 ,196(2) ,681--713
  4. Dynamical behaviors for 1{D} compressible {N}avier-{S}tokes equations with density-dependent viscosity
    Lian, Ruxu and Guo, Zhenhua and Li, Hai-Liang. J. Differential Equations: 2010 ,248(8) ,1926--1954
  5. Global existence for compressible {N}avier-{S}tokes-{P}oisson equations in three and higher dimensions
    Hao, Chengchun and Li, Hai-Liang. J. Differential Equations: 2009 ,246(12) ,4791--4812
  6. Semiclassical and relaxation limits of bipolar quantum hydrodynamic model for semiconductors
    Zhang, Guojing and Li, Hai-Liang and Zhang, Kaijun. J. Differential Equations: 2008 ,245(6) ,1433--1453
  7. Vanishing of vacuum states and blow-up phenomena of the compressible {N}avier-{S}tokes equations
    Li, Hai-Liang and Li, Jing and Xin, Zhouping. Comm. Math. Phys.: 2008 ,281(2) ,401--444
  8. Behaviour of the {F}okker-{P}lanck-{B}oltzmann equation near a {M}axwellian
    Li, Hai-Liang and Matsumura, Akitaka. Arch. Ration. Mech. Anal.: 2008 ,189(1) ,1--44
  9. Zero {D}ebye length asymptotic of the quantum hydrodynamic model for semiconductors
    Li, Hai-Liang and Lin, Chi-Kun. Comm. Math. Phys.: 2005 ,256(1) ,195--212
  10. Quantum {E}uler-{P}oisson systems: global existence and exponential decay
    J{u}ngel, Ansgar and Li, Hailiang. Quart. Appl. Math.: 2004 ,62(3) ,569--600
  11. Long-time asymptotics of kinetic models of granular flows
    Li, Hailiang and Toscani, Giuseppe. Arch. Ration. Mech. Anal.: 2004 ,172(3) ,407--428
  12. Existence and asymptotic behavior of multi-dimensional quantum hydrodynamic model for semiconductors
    Li, Hailiang and Marcati, Pierangelo. Comm. Math. Phys.: 2004 ,245(2) ,215--247
  13. Shock reflection for the damped {$P$}-system
    Hsiao, Ling and Li, Hailiang. Quart. Appl. Math.: 2002 ,60(3) ,437--460
  14. Asymptotic behaviour of solutions of the hydrodynamic model of semiconductors
    Li, Hailiang and Markowich, Peter and Mei, Ming. Proc. Roy. Soc. Edinburgh Sect. A: 2002 ,132(2) ,359--378

电话:

Email:hailiang_li  cnu  edu  cn

地址:北京市海淀区西三环北路105号 首都师范大学数学科学学院

邮编:100048

偏微分方程,国家杰出青年基金,2013.1-2016.12

Updated on:2013-09-18 22:27      Total Visits:1097

Scholars

Recently Visited

Similar Subject

Same institution

Similar Interests