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TABLE VI
CLUSTERING ACCURACY (%) AND TIME CONSUMPTION (S)

OF ALL USED METHODS ON THE COIL20 DATABASE

WITH 15 AND 20 SUBJECTS

(a) (b)

Fig. 7. Convergence of the stopping criteria (log) versus number of iterations
obtained by both methods on 15 subjects of COIL20 database, respectively.
(a) SpNM_LRR. (b) SpNF_LRR.

TABLE VII
CLUSTERING ACCURACY (%) AND TIME CONSUMPTION (S) OF ALL

USED METHODS ON THE TWO HANDWRITTEN DIGITS DATABASES

Here, each related digit coming from both MNIST and USPS
will be represented by 784- and 256-D vector, respectively.
Fig. 8 and Table VII show the constructed affinity matrices
and the best clustering accuracies of all involved methods on
both MNIST and USPS, respectively. Besides, our Schatten-p
norm with p = 1, 2/3 and 1/2 can produce the block-diagonal
coefficient matrix. Except the compared graph-based cluster-
ing methods [74], [75], SpNF_LRR method is still the faster
method among these methods, which can further show its
superiority in efficiency. It follows from Fig. 8 that the affinity
matrices of Fig. 8(b) reveal clear block-diagonal and blurred
non block-diagonal structures, which can further explain that

(a)

(b)

Fig. 8. Comparison of the affinity matrices produced by SpNM_LRR with
p = 1, 2/3 and 1/2 (left to right) on both (a) MNIST and (b) USPS.

Fig. 9. Clustering accuracies obtained by SpNM_LRR with p = 1, 2/3 and
1/2 (top to bottom) on four databases under various parameter choices.

each subject becomes highly compact and different subjects
become far apart. We observe that Fig. 8(a) do not show these
obvious differences of the block structures no matter how the
involved subjects are same or not. As a whole, Fig. 8(b) can
better capture the block-diagonal structure than Fig. 8(a). This
visual results can reflect the fact that the clustering results
obtained by SpNM_LRR on USPS are higher than MNIST in
Table VII. Similar trends have been verified in [72]. We choose
λ ∈ {0.05, 0.06, 0.08} for SpNM_LRR and SpNF_LRR with
λ ∈ {0.5, 2} and d = 120.

F. Parameters Discussion

This section will give the optimal choice of parameters.
Besides different p-values (e.g., p = 1, 2/3 and 1/2) for the
Schatten-p norm in both SpNM_LRR and SpNF_LRR, there
exist the common parameter λ, and an additional ingredient
for the expected rank number d of the coefficient matrix in
SpNF_LRR. Thus, the discussions of λ for SpNM_LRR and
(λ, d) for SpNF_LRR are given independently as follows.

For SpNM_LRR, the choice of the parameter λ is not
unique on the above each of experiments. There exists a
recent study in [77], which states that estimating λ needs to
normalize the column vectors of the data matrix X and man-
ually tune it around 1/

�
log(n), i.e., there exists a range for

λ ∈ [λmin, λmax], where both λmin and λmax will decrease as
the total number of the samples, i.e., n. However, the suggested
parameter 1/

�
log(n) is purely a moderately “good” choice,

but not the best parameter configuration for SpNM_LRR with
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(a)

(b)

(c)

Fig. 10. Clustering accuracies are obtained by the SpNF_LRR on three
databases under various choices of parameters. Note that X-label represents
the values of given d, and Y-label represents the parameter λ values, in which
λ ∈ {0.1, 0.5, 1, 2, 4, 6, 8, 10} for (a), λ ∈ {0.05, 0.1, 0.3, 0.5, 0.8, 1, 2, 3} for
(b), and λ ∈ {0.01, 0.1, 0.5, 1, 2, 4, 6, 8} for (c), respectively. (a) Extended
Yale B Database. (b) COIL20 Database. (c) Digital Database.

p = 1. The clustering accuracy obtained in our experimen-
tal settings are shown in Fig. 9 under different values of
λ. The results are insensitive to λ in a small range such as
[1.0, 3.0] for the Extended Yale B, [0.1, 0.8] for the COIL20
and [0.03, 0.1] for both USPS and MNIST digital databases.

For SpNF_LRR, we analyze the affects of the parameter
pairs (λ, d) for the clustering accuracy. The results are reported
in Fig. 10(a)–(c) for various (λ, d). Since different clustering
data accords to different rank number of representation matrix,
which has various effect on the clustering accuracy even for
the same λ. Specially, SpNF_LRR can obtain lower cluster-
ing results when d is smaller than the true rank. We know
that the determination of reducing rank is an open problem,
several works [36], [54], [78] have provided some rank esti-
mation strategies to achieve a good d. Inspired by them, we

set d sufficiently large (e.g., at least larger than the true rank)
to obtain a higher clustering accuracy. This agrees with [79]
which says as long as d is large enough, any local minima can
be a global optima. Thus, we pick a relatively larger d (≥80),
SpNF_LRR can achieve higher performance.

VII. CONCLUSION

In this paper, we present Schatten-p norm with differen
p-values for measuring low rank coefficients matrix and pro-
pose two nonconvex LRR models including SpNM_LRR and
SpNF_LRR. The main merits of both models are their accu-
rate approximation and decomposition strategy for their nearly
unbiased relaxations of the rank function. They can help us
to achieve the higher clustering accuracy and save the time
consumption in order to have a wide range of applications.
Meanwhile, nonconvex multiblock ADMM algorithms have
been devised to solve the proposed Schatten-p norm-based
methods, and then we give the algorithmic analysis from
both computational complexity and convergence guarantees
under some mild assumptions. Experiments on both synthe-
sized and real world data can demonstrate the superiority of
our proposed methods for the subspace clustering tasks.

Consider that both SpNM_LRR and SpNF_LRR are opti-
mized by the nonconvex ADMMs with multiblocks, one can
prove their convergence properties under relatively weaker
conditions, e.g., [34], [49], [66], and [69]. Furthermore, the
Schatten-p norm factorization strategy can also be used to
solve more complicated LRR variants and other low rank
matrix recovery models, e.g., [70], [75], [80], and [81].
Besides, we can extend the proposed both methods for dealing
with the large scale and deep subspace clustering problems,
e.g., [82] and [83].
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