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Fig. 10. Sensitivity analysis for the parameters � and � on the test set of
CamVid and the validation set of Cityscapes. (a) and (c) respectively represent
the ClassAvg values by varying the parameters of � = { 1, 1.5, 2, 2.5, 3}
with the parameter � fixed to 0.5 on CamVid and Cityscapes datasets.
(b) and (d) plot the ClassAvg values of ENet+ IAL, SegNet+ IAL, FCN+ IAL,
and ERFNet+ IAL when � = { 0.1, 0.3, 0.5, 0.7, 0.9} with � fixed to 2.5 on
CamVid and Cityscapes datasets, respectively.

ENet+ IAL, SegNet+ nIAL, FCN+ IAL, and ERFNet+ IAL are
reported in Fig. 10. We find that the outputs of these models
are generally stable under � � [ 1, 3] and � � [ 0.1, 0.9], which
means that the segmentation results will not be significantly
influenced by the choices of these two parameters. Therefore,
the � and � in our method can be easily tuned for practical use.

D. Comparison of Training Time

This section compares the training time of ENet vs.
ENet+ IAL, SegNet vs. SegNet+ IAL, FCN vs. FCN+ IAL,
and ERFNet vs. ERFNet+ IAL on CamVid and Cityscapes
datasets. Here we do not include the training time
of ENet+ Uni, SegNet+ Uni, FCN+ Uni, and ERFNet+ Uni
because their structures are identical to those of ENet, SegNet,
FCN, and ERFNet correspondingly, so deploying the uniform
class weights will not influence the training time of ENet,
SegNet, FCN and ERFNet. We aim to study whether the
incorporation of IAL will increase the training time. All SS
models are trained on two K80 GPU, and the mini-batch
size and iteration number are set to 8 and 300, respectively.
From the results provided in Table V, we see that the IAL
incurs very little extra time cost when compared with the
network equipped with the cross-entropy loss. Meanwhile,
Section IV-B reveals that the IAL based networks are able
to significantly improve the segmentation performance of the
cross-entropy loss based counterparts. Therefore, the proposed
IAL is both effective and efficient.

V. CONCLUSION

Semantic segmentation in driving environment is quite dif-
ferent from its traditional implementations for general natural
images, as various classes might have different levels of impor-
tance for driving safety. Based on this argument, this paper

TABLE V

TRAINING TIME OF VARIOUS DEEP MODELS ON
CAMVID AND CITYSCAPES DATASETS (UNIT: HOUR)

proposes a novel hierarchical importance-aware loss (IAL) so
that the object classes with different importance are adaptively
allocated different weights during the model training stage.
As a result, the objects that are critical for safe-driving can be
segmented more accurately than the traditional SS methods as
revealed by the experiments. Moreover, our loss function IAL
is general in nature and can be easily combined with many
other existing SS algorithms for various applications with the
consideration of class importance.
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