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Abstract

The central problem for most existing metric learning meth-
ods is to find a suitable projection matrix on the differences of
all pairs of data points. However, a single unified projection
matrix can hardly characterize all data similarities accurately
as the practical data are usually very complicated, and simply
adopting one global projection matrix might ignore impor-
tant local patterns hidden in the dataset. To address this issue,
this paper proposes a novel method dubbed “Data-Adaptive
Metric Learning” (DAML), which constructs a data-adaptive
projection matrix for each data pair by selectively combining
a set of learned candidate matrices. As a result, every data pair
can obtain a specific projection matrix, enabling the proposed
DAML to flexibly fit the training data and produce discrimi-
native projection results. The model of DAML is formulated
as an optimization problem which jointly learns candidate
projection matrices and their sparse combination for every
data pair. Nevertheless, the over-fitting problem may occur
due to the large amount of parameters to be learned. To tackle
this issue, we adopt the Total Variation (TV) regularizer to
align the scales of data embedding produced by all candidate
projection matrices, and thus the generated metrics of these
learned candidates are generally comparable. Furthermore,
we extend the basic linear DAML model to the kernerlized
version (denoted “KDAML”) to handle the non-linear cases,
and the Iterative Shrinkage-Thresholding Algorithm (ISTA)
is employed to solve the optimization model. Intensive ex-
perimental results on various applications including retrieval,
classification, and verification clearly demonstrate the superi-
ority of our algorithm to other state-of-the-art metric learning
methodologies.

Introduction
Metric learning aims to learn a distance function for data
pairs to faithfully measure their similarities. It has played
an important role in many pattern recognition applica-
tions, such as face verification (Liu et al. 2018), person re-
identification (Si et al. 2018), and image retrieval (Zhan et
al. 2009; Liu, Tsang, and Müller 2017). The well-studied
metric learning models are usually global, which means that
they directly learn a single semi-positive definite (SPD) ma-

trix M̂ = P̂
>
P̂ to decide a Mahalanobis distance func-
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Figure 1: The comparison of traditional metric learning and
our proposed model. (a) The traditional method learns a sin-
gle global projection matrix P̂ to distinguish the similarity
of (x, x′). (b) Our proposed DAML jointly learns multiple
projection matrices P ::0, P ::1, · · · , P ::c and their weight
vector w ∈ Rc for each data pair (x, x′).

tion DP̂ (x, x
′) = (x− x′)>M̂(x− x′)1 for all data pairs

(x, x′) (see Fig. 1(a)), where P̂ can be understood as a pro-
jection matrix. The detailed implementations can be linear
projection (Harandi, Salzmann, and Hartley 2017) or non-
linear deep neural networks (DNN) (Oh Song et al. 2016).
The primitive linear works utilized the supervised informa-
tion (e.g. must-link and cannot-link) to control the learned
distance during their training phases, such as Distance Met-
ric Learning for Clustering (Xing et al. 2003), Large Margin
Nearest Neighbor (LMNN) (Weinberger, Blitzer, and Saul
2006), and Information-Theoretic Metric Learning (ITML)
(Davis et al. 2007). To enhance the fitting performance and
effectively discover the structure for more complicated data,
some recent non-linear methods including Projection Metric
Learning on Grassmann Manifold (Huang et al. 2015) and
Geometric Mean Metric Learning (GMML) (Zadeh, Hos-
seini, and Sra 2016) are proposed to learn the matrices M̂
and P̂ on a manifold instead of the original linear space.
Moreover, by adaptively enriching the training data, Adver-
sarial Metric Learning (Chen et al. 2018; Duan et al. 2018)
showed further improvement on the linear metric by dis-

1For simplicity, the notation of “square” on DP̂ (x, x′) has
been omitted and it will not influence the final output.



criminating the confusing yet critical data pairs produced by
the generator. There are some other methods that replace the
linear projection P̂ x by the non-linear form P̂W(x) so that
the model representation ability can be boosted, in which
the mapping W(·) usually indicates a deep neural network.
For example, the Convolutional Neural Network (CNN) is
adopted by Siamese-Net (Zagoruyko and Komodakis 2015)
while Multi-Layer Perceptron (MLP) is employed by Dis-
criminative Deep Metric Learning (DDML) (Hu, Lu, and
Tan 2014). However, the above global metric learning meth-
ods are not flexible for handling complex or heterogeneous
data, because they all use the same projection operator for
all data pairs, which might be inappropriate to characterize
the local data properties. As a result, some important pat-
terns carried by the training data are ignored and the learned
metric can be inaccurate.

To improve the flexibility of metric learning for fit-
ting complex data pairs, various local models were pro-
posed from different viewpoints. For example, LMNN was
extended to a local version by learning a specific met-
ric for each class based on certain classification criterion
(Weinberger and Saul 2008). Afterwards, the Instance Spe-
cific Distance was proposed to further enhance the met-
ric flexibility on each of the training examples (Zhan et
al. 2009). Recently, in Parametric Local Metric Learning
(Wang, Kalousis, and Woznica 2012), the authors proposed
the weighted Mahalanobis distance in which multiple met-
ric values are linearly combined. Based on the similar way,
the traditional methods LMNN and GMML have also been
extended to the local forms by introducing the weighted
distances (Bohné et al. 2014; Su, King, and Lyu 2017). In
contrast to the combination of multiple metrics of PLML, a
Gaussian mixture based model (Luo and Huang 2018) par-
titioned the metric M̂ into multiple blocks and proposed a
localized norm to improve the model flexibility. However,
these improvements on metric M̂ are not guaranteed to con-
sistently render reasonable projections for discriminating the
similar pairs from dissimilar ones. Therefore, there are also
some works aiming at directly refining the projection opera-
tor P̂ . For instance, Gated Siamese-Net (Varior, Haloi, and
Wang 2016) employed a gating function to selectively em-
phasize the local pattern for the projected data. Similarly,
an attention mechanism was utilized in the image matching
model (Si et al. 2018), by which the feature-pair alignment
can be performed on the projection results.

Although the existing metric learning models have
achieved promising results to some extent, most of them
cannot adaptively find the suitable projection strategy for
different data pairs, as they are not data-adaptive and thus
the learning flexibility is rather limited. To this end, we pro-
pose a novel metric learning model that generalizes the sin-
gle projection matrix to multiple ones, and establish a selec-
tive mechanism to adaptively utilize them according to the
local property of data points (see Fig. 1(b)). In other words,
our method jointly learns multiple candidate matrices and
their sparse combinations for different training pairs. On one
hand, every pair of examples is associated with a definite
projection matrix which is constructed by wisely selecting

and combining a small fraction of candidate matrices. On
the other hand, the candidate matrices are also automatically
learned to minimize the training loss on each training pair.
Considering that such a data-adaptive projection may bring
about over-fitting, we further introduce the concept of “met-
ric scale” and employ the Total Variation (TV) regularizer
to enforce the embedded data produced by different candi-
date projection matrices are generally aligned in the same
scale. Consequently, the solution space for learning the can-
didate projection matrices shrinks and the over-fitting prob-
lem caused by scale variations can be effectively alleviated.
Thanks to the sparse selections of projection matrices and
the operation of scale alignment, every data pair is able to
acquire suitable projection to reach discriminative represen-
tation for further distance calculations. Therefore, our pro-
posed method is termed as “Data-Adaptive Metric Learn-
ing” (DAML). The main contributions of this paper are sum-
marized below:

• We propose a novel metric learning framework dubbed
DAML, which is able to learn adaptive projections for dif-
ferent data pairs to enhance the discriminability and flex-
ibility of the learned metric.

• A kenerlized version is devised to enable the DAML
model to successfully handle the non-linear cases, and an
efficient optimization algorithm is designed to solve the
proposed model which is guaranteed to converge.

• DAML is empirically validated on various typical datasets
and the results suggest that DAML outperforms other
state-of-the-art metric learning methodologies.

The Proposed DAML Model
In this section, we first introduce some necessary notations.
After that, we establish the basic DAML model in linear
space, and then extend it to a kernerlized form to handle the
non-linear cases. Finally, we derive the Iterative Shrinkage-
Thresholding Algorithm (ISTA) to solve the proposed opti-
mization problem.

Notations
Throughout this paper, we write matrices as bold uppercase
characters and vectors as bold lowercase characters. Ten-
sors are written as Euclid uppercase characters. Let y =
(y1, y2, · · · , yn)> be the label vector of training data pairs
X = {(x1, x

′
1), (x2, x

′
2), · · · , (xn, x′n)} with xi, x′i ∈

Rd, where yi = 1 if xi and x′i are similar, and yi = 0
otherwise. Here d is the data dimensionality and n is the to-
tal number of data pairs. Given P as a three-order tensor,
and then the k-th slice of tensor P is written as P ::k. The
notations || · ||F , || · ||1, and || · ||2 denote the Frobenius-
norm, l1-norm, and l2-norm, respectively. The Total Vari-
ation (TV) norm ||a||tv for a vector a ∈ Rd is defined
as
∑d−1
i=1 |ai − ai+1|. The signum function sign(z) = 1 if

z ≥ 0, and sign(z) = −1 otherwise.

Linear DAML Model
Given the matrix M̂ ∈ Rd×d in the traditional Maha-
lanobis distance, we know that M̂ can be decomposed as
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Figure 2: Illustration of scale alignment. The lengths of pro-
jected ei (i = 1, 2, · · · , d) by different projection matrices
are summed up to the same value. Here d is simply set to 3
for visualization.

M̂ = P̂
>
P̂ , and thus the squared Mahalanobis distance

(xi − x′i)>M̂(xi − x′i) between xi and x′i is equivalent to
the Euclidean distance after their projections by P̂ , i.e.,

DP̂ (xi, x
′
i) = ||P̂ xi − P̂ x′i||22, (1)

where P̂ is the projection matrix of the size d × r, and r
is the dimensionality of projection results. Since only one
global projection matrix P̂ is adopted, the traditional meth-
ods are not sufficiently flexible for learning the similarities
of all data pairs. To address this limitation, we build a data-
adaptive metric learning scheme which automatically gen-
erates the suitable projection matrix for each of the n data
pairs (xi, x

′
i) (i = 1, 2, · · · , n). As such, the local prop-

erty of dataset can be exploited and an improved metric can
be finally learned. To be specific, we propose the following
distance regarding tensor P , namely

DP(xi, x
′
i) = ||P (wi)xi − P (wi)x

′
i||22, (2)

where P is a three-order tensor stacked by a primitive pro-
jection matrix P ::0 and c candidate matrices P ::1, P ::2 · · · ,
P ::c in depth. For the i-th data pair, its specific projection
matrix has the form

P (wi) = P ::0 + λ
∑c

k=1
wikP ::k, (3)

where wi = (wi1, wi2, · · · , wic)> and wik is the weight
of candidate projection matrix P ::k for constructing P (wi).
The parameter λ is tuned by the user, and λ = 0 degen-
erates our model to the traditional metric learning. From
Eq. (3), we see that the data-adaptive projection matrix
P (wi) is decided by the sum of a primitive projection ma-
trix P ::0 and the linear combination of the candidate projec-
tion matrices. Therefore, we have to jointly learn the tensor
P ∈ Rr×d×(c+1) for all data pairs as well as the weight vec-
tor wi for the i-th training data pair (xi, x′i). By taking all
n training pairs into consideration and putting all wi into a
matrixW =(w1,w2, · · · ,wn), the basic empirical loss for
our DAML model is formed as

L(P , W ) =
1

n

∑n

i=1
l(DP(xi, x

′
i), yi), (4)

in which the function l(DP(xi, x
′
i), yi) evaluates the in-

consistency between the label yi and the model prediction
DP(xi, x

′
i) for the data pair (xi, x′i). Note that practically

not all candidate projection matrices are needed to generate
the data-adaptive projection matrix P (wi) for the i-th data
pair, so we use the regularizer ||W ||1 to encourage the algo-
rithm to sparsely select a small subset of candidate matrices
P ::0,P ::1, · · · ,P ::c to suitably reconstruct P (wi).

The good news by introducing the combination of can-

didate matrices is that the fitting ability of our model can
be enhanced. Nevertheless, the bad news is that if we
merely minimize the loss function Eq. (4) equipped with
the sparse regularizer ||W ||1 to learn our metric, the over-
fitting problem may occur due to the large amount of en-
tries in {P ::0,P ::1, · · · ,P ::c} to be learned. Therefore, we
should find a way to constrain the final solution to a suitable
hypothesis space. Ideally, the linear combination of c + 1
candidate matrices in {P ::0,P ::1, · · · ,P ::c} can produce
exact label for every specific data pair when we minimize
l(DP(xi, x

′
i), yi), which is undesirable and cannot acquire

the reasonable general metric. This is because the candidate
matrices in {P ::0,P ::1, · · · ,P ::c} can produce the results
with arbitrary scales.

To address the over-fitting problem caused by scale
variations, we introduce the notation of “metric scale”
s(P ::k) for P ::k (k = 0, 1, · · · , c) and require all scales
yielded by {P ::0,P ::1, · · · ,P ::c} to be as close as pos-
sible. To this end, we devise the TV regularizer on the
scale vector s(P) = (s(P ::0), s(P ::1), · · · , s(P ::c))

> ∈
Rc+1, such that the difference between any two of
{s(P ::0), s(P ::1), · · · , s(P ::c)} can be minimized. Since all
projection matrices adopt the comparable scales to measure
the distance between pairs of data points, the overfitting
caused by scale variations of projection matrices can be ef-
fectively alleviated. Specifically, s(P ::k) is defined as the
sum of squared Mahalanobis distances between the projec-
tion on orthonormal bases (i.e., P ::kei) and the origin, i.e.,

s(P ::k)=
∑d

i=1
DP ::k

(ei, 0)=
∑d

i=1
||P ::kei−0||22, (5)

where ei is the i-th orthonormal base in Rd. As shown in
Fig. 2, the lengths of projected ei (i = 1, 2, · · · , d) by
different projection matrices are summed up to the same
value so that the generated scales are perfectly aligned. Since
Eq. (5) can be simplified to s(P ::k) = ||P ::k||2F , the TV
regularizer ||s(P)||tv can be easily tackled in the following
optimization.

By combining the above empirical loss Eq. (4), sparse
regularizer ||W ||1 and TV regularizer s(P ::k), our DAML
model is formally formulated as

min
P,W

L(P , W ) + α||s(P)||tv + β||W ||1, (6)

in which the TV regularizer ||s(P)||tv facilitates the scale
alignment and the l1-norm regularizer ||W ||1 performs the
sparse selection of candidate projection matrices for data-
adaptive projections.

In test stage, given a new test data pair (z, z′) from the d-
dimensional example space, we need to decide the weights
for selecting candidate projection matrices, as the optimal
weight matrixW (denotedW ∗) is merely learned for train-
ing data. Inspired by the regression mechanism in Low-Rank
Representation (LRR) (Liu et al. 2013), here we employ the
linear regression to predict the weight vector wz ∈ Rc for a
new data pair (z, z′), i.e.,

wz = Q∗(z + z′), (7)
where Q∗ ∈ Rc×d is learned from the linear regression by
minimizing ||QX −W ∗||2F , and X = (x1 + x′1, x2 +
x′2, · · · , xn + x′n). Based on the predicted weight vector



wz , we know that the distance between z and z′ equals to
DP∗(z, z′) = ||P ∗(wz)z − P ∗(wz)z′||22, (8)

in which P∗ is learned by solving Eq. (6).

Kernelized DAML Model
In this part, we show that the linear DAML model proposed
above can be easily extended to a kernelized form (denoted
“KDAML”) to handle the non-linear cases. A symmetric
similarity function κ is a kernel (Bishop 2006) if there exists
a (possibly implicit) mapping function φ(·) : X → H from
the instance space X to a Hilbert space H such that κ can be
written as an inner product in H, i.e.,

κ(x, x′) = φ(x)>φ(x′), (9)
where x and x′ are examples from the instance space X.

To perform the kernel extension, we replace the exam-
ples xi and x′i with their feature mapping results φ(xi) and
φ(x′i), and thus the kernelized distance Dκ

P(xi, x
′
i) which

follows Eq. (2) is written as
Dκ

P(xi, x
′
i) = ||P (wi)φ(xi)−P (wi)φ(x

′
i)||22, (10)

in which the mapping results φ(xi), φ(x′i) ∈ Rh and h
is the dimensionality of the Hilbert space H. Notice that in
the above kernelized distance, the size of candidate matri-
ces P ::k (k = 0, 1, · · · , c) are increased to r × h rather
than its original size of r × d. Therefore, it is unrealis-
tic to directly learn the parameters in P ::k within Rr×h,
because the dimensionality of Hilbert space h is usually
assumed to be very high or even infinite (Bishop 2006;
Liu and Tsang 2017), which means that the large-scale ma-
trixP ::k cannot be computed within the limited time. There-
fore, according to (Weinberger and Tesauro 2007), we ex-
press the candidate matrix P ::k as the following form re-
garding the mapping results φ(xi) (i = 1, 2, · · · , n), and
obtain

P ::k = R::kϕ
>, (11)

where R::k ∈ Rr×n and ϕ= (φ(x1),φ(x2), · · · ,φ(xn)) ∈
Rh×n. After that, the problem has been transformed to learn
R::0,R::1, · · · ,R::c, of which the sizes are independent with
h, and thus the mathematical operations in the original high-
dimensional Hilbert space is avoided. By further denoting
the n-dimensional vectors as{

ki=(κ(xi,x1), κ(xi,x2), · · · , κ(xi,xn))>,
k′i=(κ(x′i,x1), κ(x

′
i,x2), · · · , κ(x′i,xn))>,

(12)

we have
Dκ

R(xi, x
′
i)

= (φ(xi)− φ(x′i))>(R::0ϕ
> +

∑c

k=1
R::kϕ

>)>

× (R::0ϕ
> +

∑c

k=1
R::kϕ

>)(φ(xi)− φ(x′i))

= (φ(xi)−φ(x′i))>ϕR(wi)
>R(wi)ϕ

>(φ(xi)−φ(x′i))
= (ki − k′i)>R(wi)

>R(wi)(ki − k′i), (13)

in which the tensor R ∈ Rr×n×(c+1) is stacked by the
candidate matrices R::0, R::1, · · · , R::c, and the matrix
R(wi) ∈ Rr×n corresponds to the data-adaptive projection
matrix P (wi) in Eq. (2). Compared with the linear DAML
model, and additional step required by the kernelized DAML

is that the vectors ki and k′i in Eqs. (12) and (13) should be
pre-computed for the i-th pair. As long as the kernel κ(·) is
specified, we may finally obtain the kernelized distance by
Eq. (13). In this paper, we adopt the Gaussian kernel func-
tion as κ(·) due to its popularity and computational easiness.
Since the distance formulation of KDAML (i.e. Eq. (13))
shares the equivalent mathematical expression with that of
linear DAML (i.e. Eq. (2)), it can be directly solved via the
same optimization algorithm as the linear DAML. The opti-
mization process is detailed in the next section.

Optimization

For algorithm implementation, the loss function l(Di, yi) in
Eq. (4) can be squared loss, squared hinge loss or other pop-
ular formulations, which are continuous and have the deriva-
tive l′Di(Di, yi) regarding Di

2. Then we employ the Itera-
tive Shrinkage-Thresholding Algorithm (ISTA) (Rolfs et al.
2012) to solve our problem in Eq. (6). The general ISTA
solves a continuous optimization problem with the form

min
θ
f(θ) + g(θ), (14)

where θ is the optimization variable, f(θ) is derivable, and
g(θ) is usually non-smooth. The solution to Eq. (14) can
be found by iteratively optimizing the following function,
namely
ΓL(θ, θ

(t))

=f(θ(t))+(θ−θ(t))>∇f(θ(t))+L

2
||θ−θ(t)||22+g(θ), (15)

where L is Lipschitz constant, and ∇f(θ(t)) computes the
gradient of f on θ(t). Eq. (15) admits a unique minimizer,
which is

ΠL(θ
(t)) =argmin

θ
g(θ)+

L

2
||θ−(θ(t)− 1

L
∇f(θ(t)))||22,

(16)
where L is usually manually tuned to satisfy
f(ΠL(θ

(t)))+g(ΠL(θ
(t))) ≤ ΓL(ΠL(θ

(t)), θ(t)). (17)

To solve our model, we let θ = (P , W ), so we have f(θ)
and g(θ) in our model as

f(P , W ) = L(P , W ) + α||s(P)||tv, (18)
and

g(W ) = β||W ||1. (19)

Then in each iteration, we have to minimize the following
function
J(P , W )

= β||W ||1 +
L

2
||W−(W (t)− 1

L
∇WL(P(t), W (t)))||2F

+
L

2

∥∥∥∥P−[P(t)−(1
L
(∇PL(P(t),W (t))+α∇P||s(P)||tv)

]∥∥∥∥2
F

,

(20)

2Here the notation DP(xi, x
′
i) is simplified as Di for conve-

nience.



in which3{
∇WL(P(t),W (t))= 1

n

∑n
i=1l

′
Di
(Di, yi)∇WDi,

∇PL(P(t),W (t))= 1
n

∑n
i=1l

′
Di
(Di, yi)∇PDi.

(21)

To minimize above Eq. (20), here we provide the computa-
tion results of∇WDi and∇PDi respectively. By using the
chain rule of derivate, we can easily obtain that4{

∇wiDi = 2(A>1:i,A
>
2:i, · · · ,A

>
c:i)
>wi,

∇P ::k
Di = 2

∑c
j=0 wikwijxix

>
i P
>
::j .

(22)

Based on above results, the minimizer of Eq. (20) (i.e. the
iteration rule) can be summarized as{
W (t+1) = T β

L
(W (t)− 1

L∇WL(P
(t),W (t))),

P(t+1) = P(t) − 1
L (∇PL(P(t),W (t))+α∇P ||s(P)||tv,

(23)
in which the Soft Threshold Operator Tµ(v) (Cai, Candès,
and Shen 2010) is defined as

Tµ(v) =


v − µ, if v > µ,

v + µ, if v < −µ,
0, otherwise.

(24)

We summarize the training phase of DAML in Algorithm 1,
where Eq. (23) is denoted as

(P(t+1), W (t+1)) =ΠL(P(t), W (t)). (25)
Based on the output of Algorithm 1, the testing steps
for a new data pair are described in Algorithm 2. Since
KDAML has the equivalent mathematical expression with
linear DAML, the training procedure (Algorithm 1) and test-
ing steps (Algorithm 2) are directly applicable to KDAML.

Finally, we want to explain the convergence of Algorithm
1. Although the traditional ISTA is designed for convex
optimization, some extended convergence proofs for non-
convex problems have been provided in the prior works such
as (Cui 2018). Therefore, although the objective function of
our model is non-convex, the adopted optimization process
is still theoretically guaranteed to converge to a stationary
point.

Experiments
In this section, intensive empirical investigations are con-
ducted to validate the effectiveness of our proposed method.
In detail, we compare the performance of the DAML and
KDAML models with: 1) the classical linear metric learn-
ing methods ITML (Davis et al. 2007) and LMNN (Wein-
berger, Blitzer, and Saul 2006); 2) the DNN based met-
ric learning method DDML (Hu, Lu, and Tan 2014); and
3) state-of-the-art metric learning methods GMDRML (Luo
and Huang 2018), LGMML (Su, King, and Lyu 2017),
and AML (Chen et al. 2018). All methods are evaluated
on retrieval, classification and verification tasks. For the
compared methods, we follow the authors’ suggestions to

3∇P ::k ||s(P)||tv = 2sign(||P ::k||2F − ||P ::k+1||2F )P ::k −
2sign(||P ::k||2F − ||P ::k−1||2F )P ::k.

4Here wi = (1, λw1, λw2, · · · , λwc)
> and xi = xi − x′i,

respectively. The element Akji in the tensor A ∈ R(c+1)×(c+1)×n

equals to x>i P ::kP ::jxi+x′>i P ::kP ::jx
′
i−2x>i P ::kP ::jx

′
i.

Algorithm 1 Solving Eq. (6) via ISTA.
Input: Training data pairs X = {(xi, x′i)|1 ≤ i ≤ n};
labels y ∈ {0, 1}n; parameters α, β, λ.
Initialize: t = 1; L0 = 1; η > 1;W (0) = 0; P(0) = 0.
Repeat:

1). Find the smallest nonnegative integers it such that with
L̂ = ηitL(t−1)

f(ΠL̂(P
(t), W (t))) + g(ΠL̂(P

(t), W (t)))

≤ ΓL̂(ΠL̂(P
(t), W (t)), (P(t), W (t))).

2). Set L(t) = L̂ and use Eq. (23) to update
(P(t+1), W (t+1)) =ΠL(t)(P(t), W (t)).

3). Update t = t+ 1.

Until Convergence.
Output: The converged P andW .

Algorithm 2 Distance Computation for New Test Data Pair.
Input: Test data pair (z, z′); the learnd projection tensor
P∗ and selection weightsW ∗.
Initialize: Regression matrixQ∗ = (XX

>
)−1W ∗(X)>.

Procedure:
1). Predict the weights

wz = Q
∗(z + z′).

2). Compute the distance
DP∗(z, z′) = ||P ∗(wz)z − P ∗(wz)z′||22.

End.
Output: The predicted distance DP∗(z, z′).

choose the optimal parameters. For the tuning parameters,
c is fixed to 10 while α, β and λ are all tuned by search-
ing the grid {0, 0.2, 0.4, · · · , 2} to get the best perfor-
mances. We follow ITML and use the squared hinge loss as
l(DP(xi, x

′
i), yi) in Eq. (6) for our objective function. The

Gaussian kernel function (Bishop 2006) is employed for im-
plementing KDAML.

Experiments on Retrieval
Retrieval is one of the most typical applications of metric
learning, which aims to search the most similar instances for
a query instance (Zhan et al. 2016). In our experiments, we
use the PubFig face image dataset (Nair and Hinton 2010)
and the Outdoor Scene Recognition (OSR) dataset (Parikh
and Grauman 2011) to evaluate the capabilities of all com-
pared methods.

In the first experiment, we use the cropped PubFig face
image dataset, which includes 771 images from 8 individu-
als. We follow the experimental setting in (Luo and Huang
2018) and use a 512-dimensional Dense Scale Invariant Fea-
ture Transform (DSIFT) features (Cheung and Hamarneh
2009) to represent each image. This experiment is run 5
times, where 30 images per person are randomly selected
each time as the training data. Fig. 3(a) shows the retrieval



Query Top 5 result

(a) Results of 5 nearest neighbors based on queried images

on Pubfig dataset. For each queried image, the first row

shows the results of LGMML, and the second row presents

the results of our method.

Query Top 5 result

(b) Results of 5 nearest neighbors based on queried images

on OSR dataset. For each queried image, the first row shows

the results of LGMML, and the second row presents the

results of our method.

Figure 3: Results of 5 nearest neighbors on PubFig and OSR datasets for image retrieval. The green box means that the retrieval
result is correct, and the red box denotes that the retrieval result is incorrect.

Table 1: The classification error rates (%) of the top 5 retrieval results predicted by all methods on the PubFig and OSR
datasets. The best two results in each dataset are highlighted in red and blue, respectively. Notation “•” indicates that DAML
and KDAML are significantly better than the best baseline method.

Datasets ITML
(Davis et al. 2007)

LMNN
(Wein. et al. 2006)

GMDRML
(Luo et al. 2018)

DDML
(Hu et al. 2014)

LGMML
(Su et al. 2017)

AML
(Ch. et al. 2018)

DAML
(Ours)

KDAML
(Ours)

t-test

PubFig 13.89± 0.12 13.65± 0.05 13.22± 0.34 13.23± 0.07 13.15±0.14 13.89±0.11 12.95±0.09 12.89±0.11 •
OSR 24.59± 0.11 24.68± 0.13 23.51± 0.24 23.61± 0.17 24.39±0.14 24.32±0.21 23.41±0.12 23.18±0.22 •

results of two queries, and the average classification error
rates of top 5 retrieval results are presented in Tab. 1. It
can be seen that our proposed DAML and KDAML achieve
the lowest error rates, i.e., 12.95% and 12.89%, respectively.
Moreover, the DNN based method DDML and local method
LGMML also yield good performances, but they are still
slightly worse than our DAML and KDAML models are re-
vealed in Tab. 1.

The second experiment is performed on the OSR dataset.
It includes 2688 images from 8 scene categories, which are
described by the high-level attribute features (Huo, Nie, and
Huang 2016). We also use 30 images for each category as
training data, and the other images are used as test data. We
repeat this procedure 5 times and use the average error rate
to evaluate all methods in Tab. 1. It can be found that our
methods DAML and KDAML still obtain the best results
23.41% and 23.18% among all comparators. Fig. 3(b) shows
the retrieval results of two queries, and it is clear that our
method learns a better distance metric than the traditional
Mahalanobis distance. Notably, we find that it is quite diffi-
cult to distinguish “mountain” and “tall-building” when their
images contain blue sky background. Therefore, LGMML
fails to consistently return the correct results (see the first
row), while our method can still render the satisfactory re-
sults. We also perform the t-test (significance level 0.05) to
validates the superiority of our method to the best baseline
method.

Experiments on Classification
To evaluate the performances of various compared methods
on classification task, we follow the existing work (Ye et al.
2017) and adopt the k-NN classifier (k = 5) based on the

learned metrics to investigate the classification error rates
of various methods. The datasets are from the well-known
UCI repository (Asuncion and Newman 2007), which in-
clude MNIST, Autompg, Sonar, Australia, Balance, Isolet,
and Letters. We compare all methods over 20 random tri-
als. In each trial, 80% of examples are randomly selected as
the training examples, and the rest are used for testing. By
following the recommendation in (Zadeh, Hosseini, and Sra
2016), the training pairs are generated by randomly pick-
ing up 1000c(c− 1) pairs among the training examples. The
average classification error rates of compared methods are
showed in Tab. 2, and we find that DAML and KDAML ob-
tain the best results. It can be noted that KDAML is gener-
ally better than DAML, as the kernel mapping improves the
non-linear ability of our model.

Among the compared methods, it can be noticed that the
main difference between ITML and our DAML is the form
of their projection matrices, in which ITML employs single
fixed projection matrix while our DAML utilizes multiple
candidate matrices to generate the data-adaptive projection
matrices. From the experimental results in Tab. 2), we can
clearly observe that DAML is able to obtain significantly
better performances than ITML, and therefore the proposed
data-adaptive projection matrix is indeed useful to enhance
the accuracy of the learned metric.

Experiments on Verification
We use two face datasets and one image matching dataset to
evaluate the capabilities of all compared methods on image
verification. For the PubFig face dataset (as described be-
fore), the first 80% data pairs are selected for training and the
rest are used for testing. Similar experiments are performed



Table 2: The classification error rates (%) of all methods on the MNIST, Autompg, Sonar, German-Credit, Balance, Isolet and
Letters datasets. The best two results in each dataset are highlighted in red and blue, respectively. Notation “•” indicates that
DAML and KDAML are significantly better than the best baseline method.

Datasets ITML
(Davis et al. 2007)

LMNN
(Wein. et al. 2006)

GMDRML
(Luo et al. 2018)

DDML
(Hu et al. 2014)

LGMML
(Su et al. 2017)

AML
(Ch. et al. 2018)

DAML
(Ours)

KDAML
(Ours) t-test

MNIST 14.31± 2.32 17.46± 5.32 12.21± 0.82 11.56± 0.07 12.19±0.14 11.52±0.27 11.34±0.12 11.12±0.21 •
Autompg 26.62± 3.21 25.92± 3.32 24.32± 2.71 23.95± 1.52 23.56±1.41 25.31±3.22 23.95±5.21 21.45±1.21 •
Sonar 17.02± 3.52 16.04± 5.31 17.12± 5.64 15.31± 2.56 21.35±4.01 16.53±3.51 15.64±1.64 15.55±3.65
Australia 17.52± 2.13 15.51± 2.53 14.12± 2.04 15.12± 5.23 18.35±1.84 12.95±2.27 13.17±1.97 13.11±2.01 •
Balance 9.31± 2.21 9.93± 1.62 6.56± 2.14 8.12± 1.97 7.36± 2.14 7.98± 2.11 6.21± 0.12 6.15± 0.17 •
IsoLet 9.23± 1.12 3.23± 1.23 3.12± 0.34 2.68± 0.71 3.91± 1.14 2.91± 2.17 2.98± 1.15 2.79± 1.32
Letters 6.24± 0.23 4.21± 2.05 3.54± 1.22 5.14± 1.04 4.56± 2.45 3.22± 1.23 3.11± 1.05 3.01± 1.23 •
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Figure 4: ROC curves of different methods on (a) PubFig, (b) LFW and (c) MVS datasets. AUC values are presented in the
legends.
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Figure 5: Parametric Sensitivities on MNIST dataset. The
test error rate is reported by changing one of α, β and γ,
and keeping the remaining two parameteres as constants.

on the LFW face dataset (Huo, Nie, and Huang 2016) which
includes 13233 unconstrained face images of 5749 individ-
uals. The image matching dataset MVS (Brown, Hua, and
Winder 2011) consists of over 3 × 104 gray-scale images
sampled from 3D reconstructions of the Statue of Liberty
(LY), Notre Dame (ND) and Half Dome in Yosemite (YO).
By following the settings in (Zagoruyko and Komodakis
2015), LY and ND are put together to form a training set
with over 105 image patch pairs, and 104 patch pairs in YO
are used for testing. The adopted features are extracted by
DSIFT (Cheung and Hamarneh 2009) and Siamese-CNN
(Zagoruyko and Komodakis 2015) for face datasets (i.e.
PubFig and LFW) and image patch dataset (i.e. MVC), re-
spectively. We plot the Receiver Operator Characteristic
(ROC) curve by changing the thresholds of different dis-
tance metrics. Then the values of Area Under Curve (AUC)
are calculated to quantitatively evaluate the performances of
all comparators. From the ROC curves and AUC values in
Fig. 4, it is clear to see that DAML and KDAML consis-
tently outperform other methods.

Parametric Sensitivity
In our proposed DAML, there are three parameters which
might influence the model performance. The parameters λ in
Eq. (3) determines the importance of the linearly combined

projection matrix. Parameters α and β in Eq. (6) respectively
control the amount and the differences of selected matrices.

As shown in Fig. 5, the parameters α and β render the
lowest test errors within the range (0.8, 1.8). It means that
the sparse regularizer and TV regularizer in Eq. (6) are in-
deed necessary for model performances. We may also find
that the performances are relatively stable in such a range,
and thus the two parameters can be easily tuned for prac-
tical use. When the parameter λ increases within (0, 0.8),
the prediction result graduatelly becomes accurate, because
the selection and combination of candidates begin to take
effects. Moreover, we notice that it is not wise to use a very
large value for λ, because such a setting intrinsically dis-
cards the shared primitive projection matrix P ::0, which is
also useful to extract the shared features in the data.

Conclusion
In this paper, we propose a metric learning framework
named Data-Adaptive Metric Learning (DAML), which
generalizes the single global projection matrix of traditional
Mahalanobis distance to a local data-adaptive form. The pro-
posed projection matrix is combined by a series of weighted
candidate matrices for a specific data pair, in which the l1-
norm is employed to sparsely select a small subset of can-
didates to form the suitable combination. Meanwhile, a TV
regularizer is utilized to align the produced scales of can-
didates so that the over-fitting caused by the arbitrary scale
variations can be avoided. Furthermore, we show that such a
linear data-adaptive metric can be easily kernelized to han-
dle the non-linear cases. The experimental results on various
tasks show that the proposed DAML is able to flexibly dis-
cover the local data property and acquire more reliable and
precise metric than the state-of-the-art metric learning meth-
ods. Since the proposed DAML framework is general in na-
ture, it is promising to apply DAML to more manifold and
DNN based metric learning models for the future works.
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