Trading oxidation power for efficiency: Differential inhibition of photo-generated hydroxyl radicals versus singlet oxygen

Jonathon Brame, Mingce Long, Qilin Li, Pedro Alvarez*

*Corresponding author. Rice University, MS 519, 6100 Main St., Houston, TX 77005, United States. Tel.: +1 713 348 5903.
E-mail address: alvarez@rice.edu (P. Alvarez).

Reactive oxygen species (ROS) such as hydroxyl radical (OH•) and singlet oxygen (1O2) that are generated in photocatalytic and photochemical AOPs can oxidize recalcitrant organic and biological contaminants with much lower potential to form carcinogenic disinfection byproducts common to chemical treatment approaches such as chlorination and ozonation (Li et al., 2008; Qu et al., 2012; Toor and Mohseni, 2007). However, the efficiency of AOPs can be hindered by the presence of background constituents in water, such as organic material (e.g., natural organic matter [NOM] or wastewater treatment plant effluent) or inorganic ions (e.g., phosphate).
Singlet oxygen is produced by visible-light active photosensitizers such as fullerenes (C60), porphyrins and Rose Bengal (RB). Since light absorption by NOM is greatest in the far UV and declines throughout the UV and visible spectrum (Edzwald et al., 1985; Korshin et al., 1997), NOM inner filtering is likely less inhibitory to visible light-activated photo-catalysts. Furthermore, O2 is much more selective than OH radicals, which are the primary ROS produced by TiO2 photocatalysis and H2O2/UV oxidation, are very powerful oxidants (2.8 V vs. standard hydrogen electrode (SHE) (Klamerth et al., 2012)), and are therefore able to oxidize a broad range of organic compounds. However hydroxyl radicals are also non-specific, making them susceptible to scavenging by non-target organic and inorganic compounds in water, and their generation requires UV light, which is partially absorbed by organic material in the water (Edzwald et al., 1985; Korshin et al., 1997).

An important factor in whether or not background organic material will significantly affect degradation treatment efficiency is the selectivity of the generated ROS (Hoigne and Bader, 1983; Kim et al., 2012; Lee and von Gunten, 2010). Hydroxyl radicals, which are the primary ROS produced by TiO2 photocatalysis and H2O2/UV oxidation, are very powerful oxidants (2.8 V vs. standard hydrogen electrode (SHE) (Klamerth et al., 2012)), and are therefore able to oxidize a broad range of organic compounds. However hydroxyl radicals are also non-specific, making them susceptible to scavenging by non-target organic and inorganic compounds in water, and their generation requires UV light, which is partially absorbed by organic material in the water (Edzwald et al., 1985; Korshin et al., 1997). Singlet oxygen is produced by visible-light active photosensitizers such as fullerenes (C60), porphyrins and Rose Bengal (RB). Since light absorption by NOM is greatest in the far UV and declines throughout the UV and visible spectrum (Edzwald et al., 1985; Korshin et al., 1997), NOM inner filtering is likely less inhibitory to visible light-activated photocatalysts. Furthermore, O2 is much more selective than OH, targeting electron-rich moieties in pollutants such as phenols and activated aromatics (Lee and von Gunten, 2010). Although this specificity could decrease the probability of inadvertent scavenging by organic matter in natural waters, O2 is a much weaker oxidant (1.1 V vs. SHE (Ahmad and Armstrong, 1984)) than OH, possibly resulting in partial oxidation of some compounds, including formation of potentially harmful oxidation byproducts (e.g., quinones, nitrophenols, aldehydes, etc. (Chen et al., 1998; Dzengel et al., 1998; Echavia et al., 2009; Topudurti et al., 1998)). A weaker oxidant may also require longer contact times or more photosensitizing material for the same degradation capacity, and not allow degradation of some materials that require strong oxidation.

Most ROS-generating photoactive and photocatalytic degradation studies are conducted using laboratory-grade deionized water, which ignores these inhibitory effects of background constituents in natural water. Recently, more research has been conducted using non-ideal water sources, specifically focusing on wastewater treatment plant (WWTP) effluent, since tertiary treatment is a likely application scenario for AOP technology (Kim et al., 2012; Klamerth et al., 2012). We recently demonstrated that selective ROS can be more efficient than non-selective ROS in removal of some organic contaminants (Kim et al., 2012), and others have done similar work in wastewater effluent (Lee and von Gunten, 2010), but this tradeoff between oxidative power and specificity in photocatalytic AOPs has not been systematically explored in the literature. This is a critical knowledge gap because inhibition of ROS-mediated degradation by naturally occurring organic matter could have a significant impact on the degradation efficiency of this technology upon implementation.

In this paper we consider two representative types of ROS commonly involved in photo-active AOPs (O2 and OH) as produced by homogeneous photoreactive chemicals as part of a larger study to determine the effect and mechanisms of organic matter and inorganic inhibition of ROS-assisted photochemical degradation. Homogeneous photoreactive materials were selected to remove confounding surface effects of heterogeneous photocatalysts (e.g., sorption, charge transfer interference, local vs. bulk ROS scavenging) and focus on the interaction between photo-generated ROS and background organic materials. We explore the extent to which common water constituents such as natural organic matter and phosphate, as well as constituents in WWTP effluent decrease degradation rates and ROS production capacity within the context of water treatment, and develop a mechanistic model to account for the decreased efficiency due to scavenging of ROS and light absorption by NOM (inner filter effect).

2. Materials and methods

2.1. Photo-reactive testing

Hydrogen peroxide (H2O2) illuminated by UV light (254 nm) was used to produce hydroxyl radicals (OH), and Rose Bengal (RB) illuminated by visible light (400–800 nm) was used to produce singlet oxygen (O2). H2O2 was 35% H2O2 supplied by Fischer Scientific. RB was supplied by Sigma–Aldrich. Photosensitizer (H2O2, RB) concentrations were 15 and 25 ppm respectively, which were chosen to match the steady state ROS production of traditional photocatalyst materials in DI water (Brame et al., 2013; Liao et al., 2013) as part of a larger study of ROS production.

Illumination occurred within a photoreactor described previously (Brame et al., 2013; Liao et al., 2013), with UV-C bulbs (H2O2, 254 nm) or visible bulbs (RB; 400–800 nm). Photo-reactive materials were stirred vigorously in a quartz reaction vessel with 1 mL sample aliquots taken at various time points for analysis. Degradation of a probe compound easily oxidized by both hydroxyl radicals and singlet oxygen (furfuryl alcohol [FFA], Sigma–Aldrich) was used as a surrogate for ROS production (Buxton et al., 1988; Haag and Hoigne, 1986; Lee et al., 2009, 2010; Minero et al., 2000), which was confirmed using electron paramagnetic resonance (EPR) spectrometry (Liao et al., 2013). Ranitidine [N-[2-{[(5-dimethylamino)ethyl)furan-2-yl]methylthio}ethyl]-N'-methyl-2-nitroethene-1,1-diamine) and cimetidine (2-cyano-1-methyl-3-{[5-methyl-1H-imidazol-4-yl]methylthio}ethyl)guanidine), two pharmaceutical compounds, were also used as representative target pollutants (Sigma–Aldrich). Dark and non-reactive controls were run to ensure that degradation was the result of photoreactive ROS interactions.

2.2. Analysis

Quantification of FFA concentration was carried out with a Shimadzu Prominence HPLC (Shimadzu Corp., Columbia MD) using a C18 column with acetonitrile and 0.1% (w/v) phosphoric acid as mobile phase solvents (70:30). First order degradation rate constants (kobs) were calculated from a linear regression of observed exponential decay. Determination of
the absorption coefficient as a function of wavelength, \(a(\lambda)\), for the various compounds used in this study was measured using an Ultrascan 2100 Pro UV/Vis spectrophotometer and a 1 cm (pathlength) quartz cuvette. ROS production and quenching were confirmed by EPR measurement using a Varian E-6 spectrometer under the following conditions: temperature = 293 K; microwave frequency = 9.225 GHz; microwave power = 10 mW; modulation amplitude = 1 G at 100 kHz; and scan time = 4 s. Since ROS are extremely short-lived, the compounds 2,2,6,6-tetramethyl-4-piperidinol (TMP) (Lee et al., 2009; Liao et al., 2013) and \(\alpha\)-(4-pyridyl-1-oxide)-N-tert-butyl nitronite (POBN) (Huling et al., 1998) were used as spin-trapping agents to measure \(1O_2\) and \(OH\) production, respectively. Upon interaction with radical species, spin traps form spin adducts which are identified by their EPR spectrum. TMP is oxidized when it interacts with singlet oxygen to form 2,2,6,6-tetramethyl-4-piperidinol-N-oxyl radical (TMPPN), which can similarly be identified by EPR. The spectra obtained were representative of \(OH\) and \(1O_2\) radical species (Liao et al., 2013). All solvents were analytical-grade and obtained from Sigma–Aldrich.

2.3. Inhibitory compounds

Three different natural water matrices (natural organic matter, phosphate and wastewater treatment effluent) were used to determine their effect on the degradation efficiency of photo-produced ROS. Suwannee River natural organic matter (SR-NOM) was obtained from the International Humic Substances Society (St. Paul, MN, USA) (Hyung et al., 2006). Phosphate (Na₃PO₄, Sigma–Aldrich) was mixed into a 1 M stock solution with the pH adjusted to 7.0. This stock solution was then diluted for individual tests. Wastewater effluent (BOD₅ = 2.4 mg L\(^{-1}\), TSS = 4.3 mg L\(^{-1}\), NH₄ = 0.9 mg L\(^{-1}\), DO = 6.2 mg L\(^{-1}\)) was obtained post-treatment from the Houston 69th street wastewater treatment plant and used without modification or dilution. The pH of all samples was circum-neutral (5–7) and no pH adjustments were made.

2.4. ROS production

Steady state ROS generation was measured using FFA as a probe compound. ROS-mediated degradation of simple organics in DI water can be modeled as a second order reaction:

\[
\frac{d[A]}{dt} = k_{ROS,A} \times [ROS]_{SS} \times [A]
\]

(3)

Here A represents the compound being degraded (e.g., FFA) and \(k_{ROS,A}\) is the reaction rate constant for a specific ROS compound reacting with A. Values of \(k_{ROS,A}\) for a variety of target compounds (A) in water are available for both OH• (Buxton et al., 1988) and \(1O_2\) (Wilkinson et al., 1995). Since ROS species are short-lived compared to experimental time-scales (Tachikawa and Majima, 2009), steady state is often assumed (Wilkinson et al., 1995), simplifying Eq. (1) to a first-order differential equation:

\[
[ROS] = [ROS]_{SS}
\]

(4)

By modeling the measured degradation loss of compound A as an exponential decay we can determine the observed degradation rate constant, \(k_{obs}\), as the slope of a log-normal plot of \([A]\) vs. time. Only initial degradation data (~30% removal) was used to calculate \(k_{obs}\) to avoid confounding effects of degradation products. By combining measured \(k_{obs}\) values with \(k_{ROS}\) values from the literature we can determine the steady state ROS concentration using Eq. (5) (Table 1).

First-order FFA degradation rate constants (\(k_{obs}\)) were measured for hydroxyl radical- and singlet oxygen-based photodegradation processes in the presence of SR-NOM. The concentration of NOM was increased up to 25 mg L\(^{-1}\) to simulate a range of realistic environmental concentrations (Ma et al., 2001; Thurman, 1985). Since Eq. (1) no longer applies with NOM as an additional reactant with generated ROS, \(k_{obs}\) values were measured to determine the effect of NOM on the overall degradation capacity of the different photosensitizing materials. Additionally, we measured the degradation rate of NOM by both \(OH\) and \(1O_2\) (Table 1) to determine the value of \(k_{ROS}\) for NOM degradation by photo-produced ROS. Due to the heterogeneous composition of NOM, UV 254 absorbance was used as a proxy for NOM concentration (Kerc et al., 2003). Although photosensitization of dissolved organic matter irradiated by natural sunlight has been shown to contribute to photodegradation of organic contaminants (Chin et al., 2004), we observed no significant FFA degradation in the absence of photosensitive materials (H₂O₂, RB) up to 25 mg L\(^{-1}\) SR-NOM (SI-Fig S1).

3. Results and discussion

3.1. Inhibition by background water constituents

3.1.1. NOM

Dissolved NOM (Steinberg et al., 2006) had a more pronounced adverse effect on \(OH\)-mediated degradation compared to \(1O_2\) degradation (Fig. 1). The addition of 25 mg L\(^{-1}\) NOM reduced the \(OH\)-mediated FFA degradation rate constant (\(k_{obs}\)) by over 60%. Even at lower NOM concentrations the H₂O₂ photo-catalytic FFA degradation rate was significantly reduced. Meanwhile 25 mg L\(^{-1}\) NOM reduced the \(1O_2\)-mediated FFA degradation rate constant by less than 20%. NOM is a complex mixture of organic materials including a small fraction of electron-rich moieties such as olefinic compounds and aromatic alcohols (Huang et al., 2004; Maximov and Glebko, 1974; Schnitzer and Khan, 1972). Singlet oxygen reacts primarily with this smaller, more hydrophobic fraction of the NOM mixture while \(OH\) is reactive with a much larger fraction, and we believe this exclusivity makes \(1O_2\)-producing processes less susceptible to scavenging by NOM (Maximov and Glebko, 1974; Schnitzer and Vendette, 1975). This greater effect of NOM on \(OH\) compared to \(1O_2\)-based photodegradation
Degradation rate constants for the degradation of furfuryl alcohol in DI water (FFA/DI), and of FFA in the presence of 25 mg/L NOM (FFA/NOM), and of the degradation of natural organic matter (NOM) as measured in this study, as well as the steady state ROS concentrations calculated from FFA degradation rates in DI water and literature values of k_{ROS} (Buxton et al., 1988; Wilkinson et al., 1995).

<table>
<thead>
<tr>
<th>Processes</th>
<th>OH• Generation (H_2O_2)</th>
<th>$^{1}O_2$ Generation (RB)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FFA/DI</td>
<td>FFA/NOM</td>
</tr>
<tr>
<td>k_{obs} (min$^{-1}$, $\times 10^{-1}$)</td>
<td>49.5 \pm 4.5</td>
<td>18.9 \pm 1.6</td>
</tr>
<tr>
<td>$[ROS]_{ss}$ (M, $\times 10^{-15}$)</td>
<td>55.0 \pm 4.9</td>
<td>564.0 \pm 60.4</td>
</tr>
</tbody>
</table>

A comparable overall decrease in the photocatalytic control. A significant difference between sample and distilled water (DI) represents statistically significant difference between sample and distilled water (DI) control.

3.1.2. Phosphate

Background concentrations of phosphate (60–3000 mg L$^{-1}$ PO_4^{3-}) also had a greater inhibitory effect on photocatalytic degradation of FFA by OH• compared to $^{1}O_2$, with the OH•-mediated degradation rate constant being reduced by more than 50% and the $^{1}O_2$-mediated degradation unaffected (Fig. 2). A comparable overall decrease in the photocatalytic degradation efficiency of several organic compounds in the presence of a similar phosphate concentration range has been reported with TiO$_2$ photocatalysis (Abdullah et al., 1990), although the degradation efficiency fell off much more quickly (more inhibition at lower concentration, similar inhibition at higher concentration). This effect is commonly attributed to competitive adsorption effects (Guillard et al., 2005; Pereira et al., 2013), or to trapping of OH• at the photocatalyst surface (Guillard et al., 2005; Kormann et al., 1991). However, neither of these effects is possible in our homogeneous system. Additionally, because the phosphate buffer was neutral (pH 7.0), the pH of the system remained unchanged, and pH-dependent effects were unlikely. Therefore, we attribute the decrease in FFA degradation to radical scavenging by phosphate. The reaction rate constant for OH• interaction with phosphate is significantly lower than for interaction with FFA (Buxton et al., 1988), however, as the phosphate concentration increases so does its contribution to scavenging (Fig. 2). At 3000 mg/L (the highest phosphate concentration tested), the degradation rate of FFA and phosphate should be similar (calculated from Eq. (1), where the term $k_{ROS,A}[A]$ is similar for phosphate and for FFA), indicating that scavenging could play a significant role in degradation inhibition. This is further validated by the lack of inhibition of FFA degradation by $^{1}O_2$ in the RB system, which is expected since the redox potential of phosphate (2.65 V vs. standard hydrogen electrode (Brusa and Grela, 2003)) allows oxidation by OH• (2.8 V) but not by $^{1}O_2$ (1.1 V). In heterogeneous systems this effect is often ignored in favor of surface interactions (Abdullah et al., 1990; Guillard et al., 2005); however, this test shows that scavenging of produced radicals by background inorganic ions can significantly reduce the degradation efficiency of OH• generating systems.

3.1.3. Wastewater effluent

Since tertiary treatment at wastewater treatment facilities is a likely implementation scenario for ROS-based treatment processes shows the impact of background organic material in the degradation process (Enriquez and Pichat, 2001; Minero et al., 1999; Schmelling et al., 1997).

![Fig. 1](image1.png)

Fig. 1 – First-order FFA degradation rate constants (k_{obs}) of OH• generated by H_2O_2 (A) and $^{1}O_2$ generated by RB (B) in deionized water (DI) with increasing concentrations of Suwanee River natural organic matter (NOM).

![Fig. 2](image2.png)

Fig. 2 – First-order FFA degradation rate constants (k_{obs}) of OH• generated by H_2O_2 (A) and $^{1}O_2$ generated by RB (B) in deionized water (DI) with increasing concentrations of phosphate. $[FFA]_0 = 25$ mg L$^{-1}$, $[H_2O_2] = 15$ mg L$^{-1}$, $[RB] = 25$ mg L$^{-1}$. Error bars represent one standard deviation from the mean of triplicate measurements, (*) represents statistically significant difference between sample and distilled water (DI) control.
systems, we also examined the inhibitory effect of organic matter in the effluent of a wastewater treatment plant on photo-generated OH\(^{•}\) and \(^{1}\text{O}_2\). The rate of FFA degradation by OH\(^{•}\) from H\(_2\text{O}_2\) was reduced by 30% [Fig. 3A]. In contrast, the singlet oxygen-mediated FFA degradation rate was not significantly reduced [Fig. 3B]. Apparently, even water that has been pre-treated in a wastewater treatment plant contains enough background material to significantly reduce degradation efficiency, and the extent of this inhibitory effect will vary based on the treatment conditions and type of ROS being used.

3.2. Degradation of pharmaceuticals

The presence of 25 mg L\(^{-1}\) NOM significantly decreased the OH\(^{•}\)-mediated degradation rate for both ranitidine and cimetidine [Fig. 4A]. The OH\(^{•}\) treatments experienced a 75–80% decrease in first-order degradation rate constants, whereas \(^{1}\text{O}_2\)-based degradation rates were mostly unaffected. The removal of pharmaceutical compounds (such as cimetidine and ranitidine), personal care products and other pollutants of emerging concern from wastewater is an important issue in water treatment due to unintended effects on downstream receptors (Fent et al., 2006; Kim et al., 2007; Snyder et al., 2005). The possibility of beneficial reuse and eventual recycling of wastewater into potable water requires efficient removal of these compounds, many of which are resistant to contemporary wastewater treatment strategies (Brame et al., 2011; Qu et al., 2012; Ternes et al., 2003). The differential inhibition between OH\(^{•}\) and \(^{1}\text{O}_2\)-mediated removal of these model pharmaceuticals (Fig. 4) corroborates the high likelihood of inhibition due to background materials in AOP systems as demonstrated in Section 3.1. These compounds are representative of those likely to be targeted in advanced oxidation treatments, again verifying the need to determine the extent of oxidative inhibition from background materials prior to implementation of these technologies.

3.3. Inhibition mechanisms

With no confounding surface effects due to our choice of homogeneous reactants, degradation inhibition is limited to scavenging of produced ROS by non-target organic species, and decreasing ROS production due to background materials blocking or absorbing light (inner filter effect)(Guillard et al., 2005).

3.3.1. Scavenging by non-target compounds

The degradation of potential scavenging compounds (such as NOM) in water can be described similar to Eq. (1):

\[
\frac{d[\text{Sc}]}{dt} = k_{\text{ROS,Sc}} \cdot [\text{ROS}] \cdot [\text{NOM}]
\]

Assuming that ROS loss is due to reactions with either the target compound (A) or the scavenging compound (NOM), a mass balance on the ROS in the system yields:

\[
\frac{d[\text{ROS}]}{dt} = P_{\text{ROS}} - k_{\text{ROS,A}} \cdot [\text{ROS}] \cdot [A] - k_{\text{ROS,NOM}} \cdot [\text{ROS}] \cdot [\text{NOM}]
\]

where \(P_{\text{ROS}}\) represents the production rate of ROS. At steady state, \(P_{\text{ROS}}\) is equal to the sum of the degradation terms, and the equation can be solved for \([\text{ROS}]_{SS}\):

\[
[\text{ROS}]_{SS} = \frac{P_{\text{ROS}}}{k_{\text{ROS,A}} + k_{\text{ROS,NOM}} + [\text{NOM}]}
\]

Inserting Eq. (8) into Eq. (3) provides an expression for the degradation rate of compound A in the presence of a scavenging compound (NOM):
\[
\frac{d[A]}{dt} = \frac{k_{\text{ROS,A}} \cdot [A] \cdot P_{\text{ROS}}}{k_{\text{ROS,A}} \cdot [A] + k_{\text{ROS,NOM}} \cdot [\text{NOM}]} + \frac{P_{\text{ROS}}}{1 + \frac{k_{\text{ROS,NOM}} \cdot [\text{NOM}]}{k_{\text{ROS,A}} \cdot [A]}} \tag{9}
\]

The value of \(k_{\text{ROS,A}}\) for FFA degradation by \(\text{OH}^+\) and \(^{1}\text{O}_2\) are available in the literature \(\text{(Buxton et al., 1988; Wilkinson et al., 1995)}\), while \(k_{\text{ROS,NOM}}\) was determined by measuring the degradation of NOM (via decrease in UV 254 absorbance) by ROS in the absence of FFA. \(P_{\text{ROS}}\) is equal to the steady state degradation rate of compound A in the absence of NOM (Eq. (1) inserted into Eq. (7) with \([\text{Sc}] = 0\)).

3.3.2. Inner filter effect

Natural organic matter absorbs light in both the visible and UV spectrums, diminishing the illumination intensity available for ROS production \(\text{(Schindelin and Frimmel, 2000; Sorensen et al., 1996)}\) and decreasing \(P_{\text{ROS}}\). This inner filter effect \(\text{(Kubista et al., 1994)}\) can be accounted for by measuring the absorbance \((\text{Abs})\) of a concentration of NOM, which is proportional to the effective path length of the light \((l_{\text{eff}})\) \(\text{(Bezares-Cruz et al., 2004)}\):

\[
\text{Abs} = \alpha \cdot l_{\text{eff}} \cdot [\text{NOM}] \tag{10}
\]

\[
\frac{I}{I_0} = 10^{-\alpha l_{\text{eff}} [\text{NOM}]} \tag{11}
\]

The absorption coefficient \(\alpha\) can be determined spectroscopically as a function of wavelength for a given NOM concentration, [NOM]. The overall decrease in ROS production is proportional to the decrease in transmitted illumination intensity over the entire reaction volume, which can be calculated as a function of both wavelength \(\lambda\) and path length \(l_{\text{eff}}\) for a given reactor geometry. For our cylindrical reactor, the decrease in transmitted light can be expressed in integral form as:

\[
\int_{\lambda_1}^{\lambda_2} \frac{l(I, \lambda) \cdot dV}{V} = \int_{\lambda_1}^{\lambda_2} \frac{l(I, \lambda) \cdot 2\pi \cdot R^2 \cdot d\lambda}{\pi R^2 h} = 2 \int_{\lambda_1}^{\lambda_2} \frac{l}{R^2} \int_0^{\frac{h}{R}} 10^{-\alpha l_{\text{eff}} [\text{NOM}]} \frac{dV}{d\lambda} \cdot d\lambda \tag{12}
\]

This expression can then be numerically integrated using the spectroscopic data for \(\alpha(\lambda)\) to obtain the decrease in illumination intensity and therefore the decrease in ROS production for a given NOM concentration. This decrease in transmitted illumination intensity is proportional to the decrease in \(P_{\text{ROS}}\) in the system. Inserting this value into Eq. (9) allows us to model the decrease in degradation rate (relative to uninhibited degradation) as a function of NOM concentration.

Fig. 5 shows the relative inhibition of the scavenging model and the inner filter model individually, as well as the total effect of these two inhibition mechanism (Eq. (12) inserted as \(P_{\text{ROS}}\) into Eq. (9)) compared to the measured degradation data. The combination of these two effects matches the data quite well, with \(r^2 > 0.99\). In the case of \(\text{OH}^+\) generation both scavenging and light filtering play a significant role, although scavenging is much more inhibitory than filtering of light by NOM in solution. For \(^{1}\text{O}_2\), however, scavenging is negligible and any loss of efficiency is due to the inner filter effect.

3.4. EPR confirmation of ROS

EPR measurements confirmed the presence of \(\text{OH}^+\) and \(^{1}\text{O}_2\) ROS and showed a significant decrease in \(\text{OH}^+\) with the addition of 25 mg L\(^{-1}\) NOM (Fig. 6). The amplitude of the EPR spectrum is qualitatively proportional to the ROS concentration for a given species \(\text{(Paul et al., 2006)}\), thus the addition of NOM clearly reduces the available \(\text{OH}^+\). Since the EPR reaction takes place in a small capillary tube, the reaction volume and light path length are both significantly smaller than in our batch ROS tests. Because of the shorter path length the inner filter effect is negligible in EPR tests, so the only mechanism for reduction in ROS concentration is radical scavenging. Interestingly, there is no apparent decrease in the \(^{1}\text{O}_2\) spectra with NOM, even though FFA degradation decreased by almost 20% with 25 mg L\(^{-1}\) NOM. This confirms that the decrease in \(^{1}\text{O}_2\) degradation efficiency is likely due more to light filtering than scavenging effects. These results confirm the ROS
4. Conclusions

Although hydroxyl radicals are more powerful oxidants than singlet oxygen, which may make them more effective for some applications, they are much more prone to efficiency loss in complex water matrices. Because singlet oxygen is a more selective oxidant, preferentially oxidizing more electron-rich compounds, it is less likely to be affected by aqueous organic matter in natural waters. Further study is needed to determine if other selective oxidants (i.e., ozone, sulfate radicals, chlorine, etc. [Lee and von Gunten, 2010]) deliver efficiency advantages in the presence of background materials similar to 3O_2. Additionally, the inner filter effect of NOM can be a significant concern when treatment volumes and illumination path lengths are large. Due to these unique strengths and weaknesses there may be some applications that are better suited for OH$^\bullet$ advanced oxidation treatment (e.g., systems with relatively clean water or contaminants requiring especially strong oxidation), and some that are better suited for singlet oxygen advanced oxidation treatment (e.g., when organic matter, phosphate and other background constituents could cause inhibition and significantly reduce the treatment efficiency). There may also be treatment scenarios in which a combination of ROS species (concurrent or sequential) would allow a high level of treatment by combining the oxidation strength of hydroxyl radicals and the selectivity of singlet oxygen. In addition to considerations of the efficiency of different ROS types, it is essential that care be taken to avoid the formation of byproducts which can potentially be more harmful than the original contaminant, especially when using a weaker oxidant for which achieving complete mineralization may be more difficult. Overall, this work underscores the importance of careful evaluation of the system-specific ROS inhibition potential for the selection of photocatalysts and design of resilient AOPs.

Acknowledgments

The authors would like to thank Dr. Lon Wilson and Dr. Yuri Mackayev for their assistance and collaboration in this project.

Appendix A. Supplementary data

Supplementary data related to this article can be found at http://dx.doi.org/10.1016/j.watres.2014.05.005.

References

