Hierarchically Structured Porous Nitrogen-Doped Carbon for Highly Selective CO₂ Capture

Di Li, ‡ Yanli Chen, † Min Zheng, ‡ Haifeng Zhao, † Yunfeng Zhao, * ‡ and Zaicheng Sun* ‡

† State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 3888 East Nanhu Road, Changchun, Jilin 130033, P. R. China
‡ Institute for New Energy Materials & Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China

ABSTRACT: Nitrogen-doping has proven to be an effective strategy for enhancing the CO₂ adsorption capacity of carbon-based adsorbents. However, it remains challenging to achieve a high doping level of nitrogen (N) and a significant porosity in a carbon material simultaneously. Here we report a facile method that enables the fabrication of ordered macroporous nitrogen-doped carbon with the content of N as high as 31.06 wt %. Specifically, we used poly(EGDMA-co-MAA) microspheres as a template to fabricate the structure which can strongly interact with melamine (the precursor of nitrogen-doped carbon framework), self-assemble into three-dimensionally ordered structure, and be easily removed afterward. Upon chemical activation, significant microporosity is generated in this material without degrading its ordered macroporous structure, giving rise to a hierarchically structured porous nitrogen-doped carbon in which a remarkable N content (14.45 wt %) is retained. This material exhibits a moderate CO₂ adsorption capacity (2.69 mmol g⁻¹ at 25 °C and 3.82 mmol g⁻¹ at 0 °C under 1 bar) and an extraordinarily high CO₂/N₂ selectivity (134), which is determined from the single-component adsorption isotherms based on the ideal adsorption solution theory (IAST) method. This value far exceeds the CO₂/N₂ selectivity of thus-far reported carbon-based adsorbents including various nitrogen-doped ones. We believe that such an unprecedented CO₂/N₂ selectivity is largely associated with the unusually high N content as well as the partially graphitic framework of this material.

KEYWORDS: Hierarchical porous nitrogen-doped carbon, Three-dimensional periodic structure, Nitrogen-doping, CO₂ capture, CO₂/N₂ selectivity

INTRODUCTION

Nitrogen doping in carbon-based nanostructures has been an effective way to tailor the properties of carbon-based materials and render their potential applications in environmental issues including fuel cells, catalysis, photocatalysis, and CO₂ capture etc. 1−7 The nanoporous structures within the bulk of nitrogen-doped carbon have enhanced their performance in such applications due to not only the higher specific surface areas with larger number of active chemical sites but also porosities with efficient transport path and uniform pore size. 8−13 Therefore, synthesis of porous nitrogen-doped carbon materials using different approaches and precursors becomes a hot topic in the materials field.

CO₂ capture and sequestration (CCS) from the fuel exhaust of power plants is anxiously required due to the global warming issue. 14−16 According to the previous research in this field, hierarchically structured porous nitrogen-doped carbon is considered as ideal candidate for CO₂ capture due to its easy handling, abundant basic sites, size- and shape-selectivity and high surface area (mesopores), easier mass-transfer to the adsorption sites (mesopores), and reduced pressure drop (macropores). 17−19 In addition to the adsorption capacity, the CO₂ selectivity, which is generally accepted to be related with the incorporation of nitrogen species, is of equal importance because practical applications are always associated with mixtures of different gases. 20−26 Until now, there are some meso/microporous nitrogen-doped carbons with different structures and controllable pore sizes constructed by the directing of hard and/or soft templates. 27,28 However, well-defined hierarchical porous nitrogen-doped carbons containing ordered macroporous skeletons have not been widely explored and reported due to the limited types of proper templates and the cumbersome procedures for construction. Therefore, facile synthesis of hierarchical porous nitrogen-doped carbons for effective CO₂ adsorption with high CO₂ selectivity is of important significance.

In this work, we report a facile procedure for synthesizing hierarchical macroporous nitrogen-doped carbons (MCN) with
ordered three-dimensional periodic structures. We explore monodisperse polymer microspheres (EGDMA-co-MAA) which are rich in carboxyl groups on the surface as a template and melamine as the carbon and nitrogen source to construct the desired structures. In this system, carboxyl groups on the template can interact with melamine, which will fix the sources around the templates. With the following self-assembly of template and calcination, the hierarchical porous structures supported by periodic macroporous skeletons can be easily constructed during the formation process of graphitic nitrogen-doped carbon with simultaneous decomposition of the polymer templates. The resultant nitrogen-doped carbon materials possess relatively high nitrogen contents and large amounts of narrow micropores (<1 nm) can be generated in the bulk by KOH activation, which are all of benefit to CO₂ adsorption. The CO₂ adsorption performances of the materials are evaluated, and they exhibit considerable CO₂ adsorption capacity accompanied by inspiringly high CO₂-over-N₂ selectivity up to 158 and 134, respectively.

RESULTS AND DISCUSSION

The typical preparation procedure of periodic macroporous nitrogen-doped carbon is shown in Figure 1. Polymer spheres (poly(EGDMA-co-MAA)) were used as template to construct periodic structure and stirred with melamine in boiled water. During the centrifugation process, well-defined melamine coated polymer spheres (precursor) were packed up through a self-assembly process (Supporting Information, Figure S1).31 The precursor transformed into nitrogen-doped carbon after heating at 600 °C for 4 h (25% yield). Notably, the organic templates were removed accompanying with the carbonization of precursor. On the contrary, the removal process of silica spheres hard template involves ammonium bifluoride (NH₄HF₂) or hydrogen fluoride (HF), which is hazardous and not environmentally friendly. As a result, the MCN was successfully prepared by using this greener and facile method. As shown in the FTIR spectra (Figure 2), the carbonyl (C=O) stretching band at 1720 cm⁻¹ in polymeric template shifts 1716 and 1683 cm⁻¹ in precursor, which corresponds to H-bonding involvement of C=O with NH in

Materials. All the chemicals were purchased from Sigma-Aldrich. Monodisperse microspheres of poly(EGDMA-co-MAA) were prepared by distillation precipitation copolymerizations of MAA (methacrylic acid) with EGDMA (ethylene glycol dimethacrylate) as cross-linking agent in neat acetonitrile and the diameter of the microspheres could be tuned successively in the range of hundred nanometers.29 Preparation of MCN. Melamine (150 mg) was first dissolved in H₂O (13 mL) at 100 °C, and poly(EGDMA-co-MAA) (100 mg) dispersion (in 2 mL H₂O) was subsequently added into the solution of melamine. The mixture was stirred for 16 h at 100 °C in a capped container and then centrifuged at 8000 rpm for 10 min after cooling down. The residual precursor was dried and transferred into a capped ceramic crucible, followed by heating to 600 °C with a rate of 2.5 °C min⁻¹ under nitrogen in a furnace tube and kept at 600 °C for another 4 h to decompose polymer spheres and carbonize the precursor. Chemical Activation. MCN was immersed into aqueous solution of KOH with the weight ratio of KOH/carbon = 2:1. The mixture was stirred and heated to evaporate the water. Then the drying product was heated under a N₂ atmosphere at a rate of 3 °C min⁻¹ and kept at 600 °C for 1 h. The activated sample (a-MCN) was sequentially washed with diluted HCl and distilled water until the pH was neutral.

Characterization. Fourier transform infrared (FT-IR) spectra were recorded on a Bruker Vertex 70 spectrometer. Scanning electron microscope (SEM) images were measured on a JEOL JSM 4800F. Transmission electron microscope (TEM) images were taken using an FEI Tecnai G2 operated at 200 kV. For TEM observations, the samples were dispersed in ethanol and then dried on a lacey carbon film Cu grid. X-ray photoelectron spectra (XPS) were obtained on a Thermo Scientific ESCALAB 250 multitechnique surface analysis. The crystalline structure was recorded by using an X-ray diffractometer (XRD) (Bruker AXS D8 Focus), using Cu Ka radiation (λ = 1.54056 Å). The Brunauer–Emmett–Teller (BET)30 specific surface area was measured using a Micromeritics ASAP 2020 sorption analyzer. Thermogravimetric analyses (TGA) were performed on a TA Q500 thermogravimeter in N₂ atmosphere. The contents of C, N, and H in nitrogen-doped carbon materials were determined using a Thermo Flash EA 1112 spectrometer.

Gas Adsorption Measurement. The CO₂ and N₂ adsorption isotherms at different temperatures (0 and 25 °C) were all collected on a Micrometerics ASAP 2020 sorption analyzer. The gas purity was 99.9999% for N₂ and 99.9995% for CO₂. Before the adsorption analysis, the sample was degassed at 300 °C for 10 h under vacuum. The measurements under different temperatures and gases were taken consecutively without redegassing. The temperatures were controlled by means of a circulating bath.

Figure 1. Synthesis process of materials and illustration chemical structures of polymer and melamine.

Figure 2. FTIR spectra of melamine, polymer template, and precursor.
melamine.32,33 There are strong intermolecular hydrogen bonds in the solids of melamine with H-bonded NH stretching band (ν NH) around 3333 cm$^{-1}$, and this ν NH broadens with a maximum at 3340 cm$^{-1}$ in the precursor. During the solution processing, original hydrogen bonds (C\equivN\cdotsHN) in melamine break up and hydrogen bonds (C\equivO\cdotsHN) between melamine and the polymer form to a certain extent. After cooling down and centrifugation, both C\equivO\cdotsHN and reformed C\equivN\cdotsHN are presented in the precursor which contribute to the broadening thus the subtle shift of ν NH.34 Because there is a majority of melamine besides the melamine/polymer assembly in the precursor, the variations of ν NH could not be obviously resolved in FTIR spectra by the influence of strong melamine signals. Moreover, ν OH at 3245 cm$^{-1}$ in the polymer template shifts and contributes to the broad absorption band at 3199 cm$^{-1}$ in the precursor, which indicated the possibility of intermolecular OH\cdotsN H-bonding.33,35

The TGA curves (Supporting Information, Figure S2) of the polymer, melamine, and precursor show that the polymer template can maintain its major mass below 400 °C, under which melamine has sublimated and formed polymeric melamine.36 Accompanied by the decomposition of polymer sphere at high temperature, the fractional decomposed component of the polymer template also incorporated into the condensed melamine and thus constructed the ordered macroporous nitrogen-doped carbon. There is a platform of 8% residual mass upon 500 °C for precursor, which indicates the formation of thermostable nitrogen-doped carbon network.

Interestingly, both the precursor (Supporting Information, Figure S3) and product (MCN) exhibit characteristic structural colors (Figure 3a) which reflects the ordered arrangement of colloidal crystal templates in precursor and the periodic structure in products. The formation of 3D periodic macroporous structure (we use polymer template whose diameter distributes in the range of 350–370 nm for example) is confirmed by scanning electron microscope (Figure 3b; Supporting Information, Figure S4). The macropore size estimated from SEM is around 350 nm, which illustrates that polymer spheres act as template. The 3D ordered macropores structure appears to be typical face-centered cubic (fcc), which can be observed in the (100) plane, with each pore surrounded by six equal pores in layers perpendicular to the (111) direction. A representative low-magnification transmission electron microscope image (Supporting Information, Figure S5) further demonstrates its ordered macropore arrays.

Chemical activation was performed on MCN with KOH at a mild temperature in order to construct hierarchical porous structures with increased specific surface area, especially the microporous surface areas. The continuous macroporous structure endowed efficient KOH impregnation and activation. The KOH activated MCN (denoted as a-MCN, 12% yield) still kept its original periodic 3D porous structure as confirmed by SEM (Figure 3c). Chemical reactions of KOH with the MCN bulk made a large amount of nanoscale pores generated in the final products that can be observed in high resolution transmission electron microscope (HRTEM) image (Figure 3d).

The powder X-ray diffraction (XRD) patterns (Figure 4a) of both MCN and a-MCN show two broad (002) reflections, indicating that there is turbostratic ordering of carbon and nitrogen atoms in the MCN graphene layers, which is similar to that in bulk CN materials reported previously.11,12 HRTEM images of the two materials exhibit certain crystallized domains at the wall of the skeletons (Supporting Information, Figure S6), which reveal certain graphitic nature of the two composites. The Raman spectrum of MCN (Supporting Information, Figure S7) shows two strong broad bands at 1364 and 1576 cm$^{-1}$ that can be assigned to the D and G bands of the disordered and graphitized carbons, respectively.5,9 The comparable intensity of D and G bands also suggests that MCN is composed of graphitic domains. X-ray photoelectron spectroscopy (XPS) spectra (Figure 4b–f; Supporting Information, S8) confirm that MCN is composed of carbon,
nitrogen, and some amounts of oxygen. In the deconvoluted C 1s spectrum, the major peak at 284.8 eV is assigned to C–C coordination and the weaker ones at 286.5 and 288.7 eV are identified as the sp² C atom bonded to N in an aromatic ring and C–O component, respectively. The N 1s spectrum of MCN is assigned to two binding energies including 398.3 eV for pyridine nitrogen and 400.2 eV for pyrrole nitrogen and/or graphitic nitrogen.28,37–39 After KOH activation, the relative amount of nitrogen has decreased especially for the peak at 398.3 eV, suggesting that most of the lost nitrogen species during the activation process are associated with pyridine nitrogen.20,23 Elemental analysis reveals that the nitrogen, carbon, and hydrogen contents are 31.06%, 60.35%, and 1.36% in MCN, while the relative values for a-MCN are 14.45%, 62.03%, and 1.93%, respectively. After activation, over half loss of nitrogen was found for a-MCN. The nitrogen content of MCN is far higher than reported nitrogen-doped porous carbons, and even after activation, the N content of a-MCN is still one of the highest N-contents among porous N-doped carbons.20,23,40–46 The relatively high nitrogen contents of MCN and a-MCN reveal that they may act as excellent candidates for CO₂ capture with high selectivity under low pressure (<1 bar). Texture property is important to affect CO₂ capture performance of porous nitrogen-doped carbons. The N₂ adsorption isotherms of the two samples are shown in Figure 5a and reveal the hierarchical nanoporous structures of the two materials. The Brunauer–Emmett–Teller (BET)30 surface area increased from 156 m² g⁻¹ for MCN to 692.80 m² g⁻¹ for a-MCN, and the relative micropore surface area increased from 118.04 to 594.75 m² g⁻¹ after activation as summarized in Table 1. During the activation process, pores from 5 to 30 nm disappeared and around 2 nm were generated in a-MCN (Supporting Information, Figure S5b). Most importantly, a large amount of narrow micropores (<1 nm) are generated in a-MCN during chemical activation (Supporting Information, Figure S9), which is beneficial to CO₂ capture under low pressure (<1 bar).

On the basis of the nitrogen incorporated, interconnected porous characters of these materials, CO₂ adsorption has been performed on both MCN and a-MCN and adsorption isotherms at 0 and 25 °C are shown in Figure 5c. As given in Table 1, The MCN sample exhibited a CO₂ adsorption capacity of 1.46 mmol g⁻¹ at 25 °C and 1.93 mmol g⁻¹ at 0 °C under the ambient pressure, while the adsorption capacity of a-MCN increased to 2.69 mmol g⁻¹ at 25 °C and 3.82 mmol g⁻¹ at 0 °C. The increasing of CO₂ capacity after activation is ascribed to the generation of large amounts of narrow micropores.

To evaluate the CO₂ to N₂ selectivity which was as important as the capacity of sorbents for postcombustion application, nitrogen adsorptions on MCN and a-MCN were investigated under 0 and 25 °C (Supporting Information, Figure S10). Although MCN and a-MCN only displayed the moderate CO₂ capacity which was probably due to their low surface area, the two samples exhibited more preferential adsorption of CO₂ over N₂. Ideal adsorption solution theory (IAST)47 was used to evaluate CO₂-over-N₂ selectivity based on the single-component gas adsorption results. The accuracy of the IAST procedure has already been established for adsorption of a wide variety of gas mixtures in many porous materials.48–50 As shown in Figure 5d, both the samples exhibit remarkable CO₂/N₂ selectivities of 158 for MCN and 134 for a-MCN at 25 °C under CO₂ concentration of 10% (partial pressure of 0.1 bar) under total pressure of 100 KPa, which are exceptionally high in the reported hetero atoms-doped (ca. N, S) carbon porous materials (whose selectivity is listed in Supporting Information, Table S1, and less than 50 normally).52,23,24

To examine the real separation ability, the breakthrough experiments of separation flue gas were performed on both of MCN and a-MCN, in which a CO₂/N₂ (1.9, v/v) mixture was flowed over a packed bed of MCN or a-MCN solid with a total flow of 5 mL min⁻¹ at 25 °C, respectively. The breakthrough curves are shown in Figure 6, and the separation of CO₂/N₂ mixture through the column packed bed of MCN or a-MCN solid can be efficiently achieved. For MCN, N₂ appeared downstream shortly after (45 s) the gas mixture being introduced into the column, while CO₂ was not detected until a breakthrough time of 1086 s. The adsorption capacities for N₂ and CO₂ were calculated to be 0.09 and 2.36 wt %, respectively, corresponding to a high CO₂/N₂ selectivity of 145. Although larger CO₂ capacity (3.58 wt %) was obtained from a-

Table 1. Textural Properties, CO₂ Adsorption Capacity, and the Breakthrough Results of MCN and a-MCN

<table>
<thead>
<tr>
<th>materials</th>
<th>BET surface area (m²/g)</th>
<th>Micropore surface area (m²/g)</th>
<th>N content (wt %)</th>
<th>CO₂ adsorption capacity (mmol g⁻¹)</th>
<th>IAST selectivity CO₂/N₂ (1/9), 298 K</th>
<th>Breakthrough selectivity CO₂/N₂ (1/9), 298 K</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCN</td>
<td>156</td>
<td>118.04</td>
<td>31.06</td>
<td>1.93, 1.46</td>
<td>158</td>
<td>145</td>
</tr>
<tr>
<td>a-MCN</td>
<td>682.80</td>
<td>594.75</td>
<td>14.45</td>
<td>3.82, 2.69</td>
<td>134</td>
<td>70</td>
</tr>
</tbody>
</table>

DOI: 10.1021/acssuschemeng.5b01230
promising candidates for industrially CO₂ capture and sequestration.

■ ASSOCIATED CONTENT

Supporting Information
The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acssuschemeng.5b01230.

■ AUTHOR INFORMATION

Corresponding Authors
*For Z.S.: E-mail, sunzxcicom.ac.cn.
*For Y.Z.: E-mail, yfzhao@tjut.edu.cn.

Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS

This work was supported by the National Natural Science Foundation of China (61306081, 61176016, 21402136), Natural Science Foundation of Jilin Province (20130522142JH), China Postdoctoral Science Foundation (2013MS41716), Scientific Research Foundation for the Returned Overseas Chinese Scholars (K510900314), and the Specialized Research Fund for the Doctoral Program of Higher Education of China (20133201120004).

■ REFERENCES

prepared by distillation precipitation polymerization. **Polymer** 2006, 47 (16), 5775–5784.

(38) Li, Q.; Yang, J.; Feng, D.; Wu, Z.; Wu, Q.; Park, S.; Ha, C.; Zhao, D. Facile synthesis of porous carbon nitride spheres with hierarchical three-dimensional mesostructures for CO\textsubscript{2} capture. **Nano Lett.** 2010, 10 (9), 632–642.

(45) Ma, X. Y.; Cao, M. H.; Hu, C. W. Biphenal NO\textsubscript{2} catalytic synthesis of N-doped porous carbons for CO\textsubscript{2} capture. **J. Mater. Chem. A** 2013, 1 (3), 913–918.

