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TABLE VI
CLASSIFICATION RESULTS OF THE UNSUPERVISED DEEP NETWORKS ON ALL FIVE DATASETS

Fig. 5. Visualization of filters learned by the DAE of the first convolutional
layer. (a) Filters without the first whitening layer to process the input data.
(b) Filters using the first whitening layer.

of the DAE in the first convolutional layer, as there is usually
much redundancy inside the raw images. The redundancy and
correlations of the pixels can be reduced by the ZCA whiten-
ing technique. We visualize the filters learned by the DAE of
the first convolutional layer with and without the first whiten-
ing layer to see its impact on the learning of convolutional
kernels. Fig. 5(a) shows the visualized filters learned by the
DAE without the first whitening layer on CIFAR-10 dataset,
and Fig. 5(b) shows the filters with the first whitening layer.

From Fig. 5, it is revealed that the DAE with a whiten-
ing layer to process the input data learns a plenty of edges
and color feature detectors, while the auto-encoder without
a whitening layer learns poor features, which certifies the
whitening layer’s capacity of optimizing the DAEs.

We take the whitening layer as a type of optimization
method and evaluate its ability of optimizing the deep network.
We apply our two-layer SCDAE on CIFAR-10 dataset with
and without the second whitening layer. To make a general
conclusion, we conduct this experiment with different sizes of
network. First, the number of hidden units in the second con-
volutional layer is fixed at 3000 and number of hidden units
in the first convolutional layer is altered from 200 to 1400. On
each size, the performance of SCDAE with and without the
second whitening layer is evaluated. Classification results are
shown in Fig. 6. Then, the number of hidden units in the first
convolutional layer is fixed at 1000 with that in the second
convolutional layer changing from 500 to 3500. Fig. 7 shows
the classification results by our algorithm.

The proposed network with the second whitening layer
outperforms the one without the second whitening layer in

Fig. 6. Classification results on CIFAR-10 dataset by SCDAE with and
without the second whitening layer. The number of the hidden neurons in the
second layer is fixed at 3000.

Fig. 7. Classification results on CIFAR-10 dataset by SCDAE with and
without the second whitening layer. The number of the hidden neurons in the
first layer is fixed at 1000.

various network sizes, indicating that the whitening layer has
the capacity of optimizing the large and deep neural network.
It is conducive to learning discriminative and invariant feature
representations from redundant input data.

We then apply the proposed SCDAE with the whitening
layers on all the five datasets, and apply SCDAE without the
second whitening layer on these datasets as a controlled trail.
The networks are trained with relatively fine hyper-parameter
settings. Performance demonstrated in Table VII further proves
the importance of the whitening layers in our model.

The importance of DAE is studied following the layer-wise
whitening technique. To verify the superiority of DAE over
conventional auto-encoder, we apply a two-layer SCDAE net-
work on STL-10 dataset. In the training stage, to highlight
the influence of denoising structures, we replace the DAE
in SCDAE with the basic sparse auto-encoder as a compara-
tive trial. To evaluate the influence of denoising structures on
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TABLE VII
RESULTS OF SCDAE WITH AND WITHOUT WHITENING LAYER

APPLIED TO THE SECOND LAYER ON FIVE DATASETS

Fig. 8. Classification results on STL-10 dataset with a two-layer SCDAE
stacked by DAE and the conventional auto-encoder. Number of hidden neurons
in the first convolutional layer are fixed at 1000 and the number of hidden
neurons in the second layer is changing.

different sizes of network, we fix the number of hidden neu-
rons in the first convolutional layer and change the number of
hidden neurons in the second layer. Classification results on
STL-10 dataset are shown in Fig. 8.

As shown in Fig. 8, SCDAE with DAEs to learn the filters
outperforms that with conventional auto-encoders on all the
network sizes, which illustrates that the DAEs have better fea-
ture representation capacity than conventional auto-encoders
and can be more helpful to boost the performance of the sub-
sequent linear SVM classifier. To strengthen this inference, we
apply the proposed network with the DAEs and with conven-
tional auto-encoders on all the five datasets and compare the
classification performance, as shown in Table VIII. Results
in Table VIII show that SCDAE with denoising structures
has advantages over the similar structure with the basic auto-
encoder on different datasets, which indicates the proposed
model has the ability of learning good features from data with
various distributions.

The relations between the performance and the size of the
deep network can also be inferred from the experiment results.
Seen from Figs. 6 and 7, when fixing the size of the second
convolutional layer, the classification results vary little as the
size of the first convolutional layer changes. However, when
fixing the size of the first layer in a proper value, the clas-
sification performance improves as the second convolutional
layer gets larger. It indicates that the size of the second layer
evidently affects the performance of the deep network, while
the size of the first layer has little effect. This verdict can guide
us to design an efficient network. For instance, the number of
hidden units in the first convolutional layer can be set relatively
small within a proper region while the size of the second layer
should be as large as possible. Figs. 7 and 8 also demonstrate

TABLE VIII
CLASSIFICATION RESULTS OF A TWO-LAYER SCDAE WITH DAE AND

THE BASIC SPARSE AUTO-ENCODER ON ALL THE FIVE DATASETS

a fine property of our network: when increasing the size of
the second layer, the classification results are increasing, sug-
gesting that the proposed network has a high boundary of the
capacity to learn discriminative feature representations.

D. Conclusion of Experiments

The proposed SCDAE network outperforms the con-
ventional unsupervised deep networks on five challenging
datasets, i.e., Caltech-101, STL-10, Land-use, CIFAR-10, and
MNIST. The recognition performances on these datasets prove
that our algorithm can learn better weights thus it can gen-
erate more representative features from the original images;
Compared with SAEs, the proposed model, stacking DAEs
in a convolutional way, can reserve local relevance and learn
better features.

The experiments studying the impacts of the designed struc-
tures indicate that the DAE structure acts as one of the key
roles in our model as it can help to learn robust and abstract
feature representations compared to traditional auto-encoders.
The whitening layers are indispensable to our model as there
is usually a big drop in accuracy when removing this struc-
ture. By conducting experiments with various sizes of network,
the relation between the complexity and the performance of
the designed network is revealed: the size of deeper lay-
ers has greater influence on the final feature representation
performance than the shallower layers.

V. CONCLUSION

This paper proposes the SCDAE, an unsupervised deep net-
work inspired by recent feature learning architectures CNN
and an improvement of the existing successful network SDAE.
SCDAE is constructed by stacking the DAEs whose param-
eters are optimized through patch-wise training in a convo-
lutional way. The deep model can learn robust and abstract
hierarchical feature representations from raw visual data in
an unsupervised manner. The large network is trained with
layer-wise whitening technique, which proves to be an effec-
tive regularization method by the classification performance
on the benchmarks. It is revealed that the proposed algo-
rithm outperforms conventional feature learning algorithms on
the challenging Land-use, Caltech-101, STL-10, CIFAR-10,
and MNIST datasets, indicating that the proposed algorithm
has superiority in learning robust and abstract hierarchical
representations.

Although the proposed architecture is effective, there is still
room for further improvements. Future work will aim to stack
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more layers with better optimization methods to learn highly
hierarchical features.
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