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Abstract. Hyperspectral images have shown promising performance in many 
applications, especially extracting information from remotely sensed geometric 
images. One obvious advantage is its good ability to reflect the physical 
meaning from a point view of spectrum, since even two very similar materials 
would present an obvious difference by a hyperspectral imaging system. Recent 
work has made great progress on the hyperspectral fluorescence imaging 
techniques, which makes the elaborate spectral observation of cancer areas 
possible. Cancer cells would be distinguishable with normal ones when the 
living body is injected with fluorescence, which helps organs inside the living 
body emit lights, and then the signals can be obtained by the passive imaging 
sensor. This paper discusses the ability to screen the cancers by means of 
hyperspectral bioluminescence images. A rotational independent component 
analysis method is proposed to solve the problem. Experiments evaluate the 
superior performance of the proposed ICA-based method to other blind source 
separation methods: 1) The ICA-based methods do perform well in detect the 
cancer areas inside the living body; 2) The proposed method presents more 
accurate cancer areas than other state-of-the-art algorithms. 

Keywords: Cancer detection, hyperspectral images, independent component 
analysis. 

1 Introduction 

Much efforts have been done to combine the advantages of bioluminescence and 
fluorescence imaging [1, 2]. Actually, multispectral in vivo optical imaging 
technologies with bioluminescence and fluorescence is drawing great interest in 
recent years [3, 4, 5]. It employs bioluminescence and fluorescence imaging to obtain 
useful signals of receptors and has become another important biomedicine imaging 
techniques. Compared with the conventional biomedicine imaging techniques, such as 
ultrasonic, Computed tomography, Magnetic Resonance Imaging, positron emission 
tomography, it provides more straightforward measurements, much safer performance 
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and lower costs. One significant progress is the Maestro imaging system [6-8], which 
can obtain the hyperspectral images, covering the visible to near infrared with fine 
spectral resolution.  

As to the hyperspectral image, it is a powerful way to describe the physical 
meaning of different materials [9]. Its foremost advantage is that the spectral 
resolution is very fine and the corresponding spectrum of each different material is 
continuous and smooth, showing diagonal features for elaborately separating visually 
very similar objects. So hyperspectral images provides a new way to analyze the 
distribution of materials of interest [10], which have been widely used in geometrical 
information extraction. Classical methods employ the spectral unmixing to do the 
task. It is assumed that the pixels in the image are linear composed of limited 
materials’ spectra (called endmembers) and the corresponding abundances. This is the 
so called linear mixture model (LMM) [11, 12, 13]. There are two ways for spectral 
unmixing: getting the typical spectra for each material and then the abundances can be 
obtained by least squares methods with these spectra; unmixing the pixels into the 
spectra and the abundances simultaneously [14, 15, 16]. The latter approach is usually 
achieved by blind source separation based methods, including independent 
component analysis and nonnegative matrix fraction methods [17-23]. But, these 
ICA-based methods cannot obtain nonnegative abundances which is necessary in 
explaining the objects’ distributions and NMF are susceptible to the initial values. 

This paper aims to address the cancer screening problem from a hyperspectral 
fluorescence images. A rotational independent component analysis is developed to 
hyperspectral unmxing. The rotational ICA rotates the coordinate system of the 
dataset with a serial of orthogonal rotation matrix until all the data fall in the first 
quadrant. Compared with traditional ICA, the result of the rotational ICA can make 
most abundances values non-negative, satisfying the abundance non-negative 
constraint, which is an important property in reality. With the accurate abundance 
vectors, reliable endmembers can also be obtained. Besides, the proposed rotational 
ICA can be achieved without a proper initialization. 

The remainder of this paper is organized as follows. Section 2 presents the LMM 
and basic ICA model. Section 3 details the rotational ICA method and applies it to 
hyperspectral unmxing. The experiments on the fluorescence dataset are described in 
Sections 4, respectively. Section V concludes the paper. 

2 Spectral Unmixing Model in Hyperspectral Images 

2.1 A Linear Mixture Model (LMM) 

The LMM assumes that one pixel in the hyperspectral dataset is a linear mixture of 

P  known material signatures, called endmembers: 1 2A [ , ,..., ]Pa a a= , where ia is 

one of the endmember spectra with dimension " band ". The corresponding 

proportion is called the abundance: 
T T T
1 2 1 2S [ , ,..., ] [ , ,..., ]P Ns s s ω ω ω= = , where 

each column 
T
is is a N -dimension vector, corresponding to the ith  spectra in A . 

Based on LMM, each pixel in a hyperspectral image dataset can be expressed as : 
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 εω += Ax (1) 

where x  is a 1band × vector representing one pixel in the hyperspectral image, 
and ε  is the residual error. According to LMM, the abundance matrix should satisfy 
the ASC and abundance non-negative constraints (ANC) simultaneously, i.e., 

T T T T
1 2 ... ps s s+ + + = 1 and 

T 0is ≥
 

3 Rotational ICA for Hyperspectral Bioluminescence Images 

In the traditional ICA, whitening is an important step before ICA iteration procedure 
[11]. Because it can achieve the half-work of the ICA, removing any second-order 
dependencies in the dataset. The whitened dataset always exists negative values 
(Figure 1). In order to make the whitened datase t fall in the first quadrant, which 
leads the results non-negative, the rotation is needed. 

  

Fig. 1. The whitened dataset in two dimensions 

The rotation matrix can be defined as: 

                                                                         (2) 

 
Through the rotation matrix, the coordinate system will be anticlockwise rotated 

and then some points will fall in the first quadrant. The matrix W is determined by the 
rotation angle φ  and with the formula (4) W is constrained to be orthogonal. The 

new coordinate values with the rotation matrix W can be obtained as: 
 

1 1 2

2 2 1

cos sin

cos sin

y x x

y x x

φ φ

φ φ

= +


= −
 (5) 

 
 
 

( )cos sin
sin cosW φ φ

φ φ= −
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To find the rotation matrix W, an objective function in  2-dimensions case is defined 
as: 

 

                  min                                                            (6) 

 
 
 
 

where the function value is equal to zero when the point falls in the first quadrant, 
otherwise, equal to non-zero. Differentiating (6) with respect to the rotation angle φ , 

we get: 

   

                                                                                   (7) 

 

 
We can minimize the problem (6) by finding a zero of the equation (7) with respect 

to the rotation angle φ . There are many standard methods available to find the zero 

of a function, a fzero in the Matlab function can be used to find the zero of the 
equation (7). 

For n-dimension case, a general n-dimensional orthogonal transform can be formed 
from a product of 2-D rotations. In the iteration procedure, calculate the values of 
equation (7) for each axis pair and rotate the axis pair with the highest value.  

Based on LMM, hyperspectral unmxing can be considered as a problem that 
extracts potential components from the observations. Consider the abundance vectors 
as independent components, we can perform hyperspectral unmxing based on 
rotational ICA. Because the abundance vectors are correlative each other, we whiten 
the orignal dataset with correlation matrix, not the covariance matrix, to keep the 
dataset correlative. The whole algorithm is as follows: 

1) Whiten the original dataset X . Calculate the correlation matrix of original 
dataset:  

 /TXX N =       (8) 

where N is the number of pixels. Calculate the eigenvalues matrix D and 

eigenvectores matrix E of the  , and reduce the dimension of original dataset to  
p-dimensions with  

 
1/2 T( )ppZ D E X−=

 (9) 

1 2

2
2 1 2

2
1 1 2

2 2
1 2

0 0 0

0 0

0 0

if y and y

y if y and y
J

y if y and y
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 ≥ ≥

 ≥ <= 

< ≥

 +

1 2

2 1 1 2

1 2 1 2

0 0 0

0 0

0 0

0

if y and y

y y if y and yJ

y y if y and y

otherwise

φ

≥ ≥

 ≥ <∂ − = ∂ − < ≥





340 B. Du et al. 

 

where pD  is a diagonal matrix with the first p eigenvalues in the diagonal line pE  

is the corresponding vectors. Set ZZ =)0( and nIW =)0(  for 0=t . 

 

2) Calculate the output abundances )0()()( ZtWtZY ==  and set +Y  with 

)0,max( ikik yy =+
 and −Y  with )0,min( ikik yy =−

 

3)  Calculate the values of equation (7) for all axis pairs 
+−−+ −= jkikjk

k
ikij yyyyg  

4) If the maximum value of ijg is less than the tolerance required, stop. 

Otherwise, continue the following step. 

5) Choose the axis pair **, ji  with max value in ijg  and  select rows **, ji  

from matrix )(tZ  to construct the p×2 matrix *Z  

6) Using the reduced data *Z to minimize the problem (6). Search a rotational 
angle φ  to make the value of formula (7) be zero. This rotation angle is the 

stationary point of the function (6) which lead the exterma of the function (6). 

7) Calculate the rotation matrix ])1([)1( ijtrtR +=+  with )1(* +tφ , where 

*)cos(**** φ== jjii rr , *)sin(** φ−=ijr , *)sin(** φ=jir , 1=iir  for all 

**, jii ≠  and all other entries of R are zero. 

8) Set )()1()1( tWtRtW +=+  and )()1()1( tZtRtZ +=+  

9) Set 1+= tt  and go to step (2) until the max value of ijg  is close to zero. 

10) Repeating the step (2)-(9) in the procedure of non-negative ICA and get the 
abundance matrix S . According to X and S in the linear mixture model, calculate the 

endmember matrix A with the least squares estimation. 

4 Experiments 

In the experiment, three methods — FAST_ICA[11]、SISAL[9] and CICA[23] are 
employed to evaluate the efficient of the proposed strategy. The simplex identification 
via split augmented Lagrangian (SISAL) algorithm, which enforced the endmembers’ 
spectral vectors to compose a convex hull containing all the pixels in the image, 
constrained by soft constraints. We use SISAL to extract the endmember signatures 
and calculate the abundance with least square algorithm. 

The spectral angle distance (SAD) [2] is used to evaluate the accuracy of the 
extracted endmember signatures. The SAD values of the algorithms are showed in 
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Table 1 and the abundance maps are plotted in Figure 2. It is revealed that our 
proposed method presents the best endmembers, with the least SAD values for cancer 
areas and the other areas. From the abundance maps, it is also obvious that the cancer 
distribution is more accurate in our method. 
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Table 1. SAD values for different algorithm 

 skin cancer food average 
Proposed 0.2048 0.0722 0.0282 0.1018 

FAST_ICA 1.1062 0.0634 0.2342 0.4679 
SISAL 2.8786 0.1211 0.0832 1.0277 
CICA 0.2051 0.0815 0.0258 0.1041 

 
 

 skin cancer food 

Proposed 

 

   FAST_ICA 

 

Fig. 2. The abundance maps of different algorithms 
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SISAL 

 

CICA 

 

Fig. 2. (Continued.) 

5 Conclusion 

This paper proposes a rational based ICA, focusing on solving the cancer screening 
problem from hyperspectral medical images. By a rational transformation, most of the 
abundances values can be nonnegative and the corresponding spectra are also accurate . 
Experimental results show its superior performance than conventional methods. 
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