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Abstract

Kernel alignment has recently been employed for
multiple kernel clustering (MKC). However, we
find that most of existing works implement this
alignment in a global manner, which: i) indiscrimi-
nately forces all sample pairs to be equally aligned
with the same ideal similarity; and ii) is inconsis-
tent with a well-established concept that the sim-
ilarity evaluated for two farther samples in a high
dimensional space is less reliable. To address these
issues, this paper proposes a novel MKC algorith-
m with a “local” kernel alignment, which only re-
quires that the similarity of a sample to its k-nearest
neighbours be aligned with the ideal similarity ma-
trix. Such an alignment helps the clustering algo-
rithm to focus on closer sample pairs that shall s-
tay together and avoids involving unreliable simi-
larity evaluation for farther sample pairs. We de-
rive a new optimization problem to implement this
idea, and design a two-step algorithm to efficient-
ly solve it. As experimentally demonstrated on
six challenging multiple kernel learning benchmark
data sets, our algorithm significantly outperforms
the state-of-the-art comparable methods in the re-
cent literature, verifying the effectiveness and su-
periority of maximizing local kernel alignment.

Introduction
Multiple kernel clustering (MKC) aims to optimally integrate
a group of pre-specified kernels to improve clustering perfor-
mance [Zhao et al., 2009; Lu et al., 2014; Xia et al., 2014;
Zhou et al., 2015; Kumar and Daumé, 2011]. Existing re-
search in this regard can roughly be grouped into two cat-
egories. The first one learns a consensus matrix via low-
rank optimization [Xia et al., 2014; Zhou et al., 2015;
Kumar and Daumé, 2011]. The work in [Xia et al., 2014]
firstly constructs a transition probability matrix from each s-
ingle view, and them uses them to recover a shared low-rank
transition probability matrix as a crucial input to the stan-
dard Markov chain method for clustering. In [Zhou et al.,
2015], it is proposed to capture the structures of noises in
each kernel and integrate them into a robust and consensus

framework to learn a low-rank matrix. The algorithm [Ku-
mar and Daumé, 2011] learns the clustering in one view and
uses it to “label” the data in other views to modify a sim-
ilarity matrix. By following multiple kernel learning (MK-
L) framework, the other category optimizes a group of ker-
nel coefficients, and uses the combined kernel for clustering
[Yu et al., 2012; Gönen and Margolin, 2014; Du et al., 2015;
Lu et al., 2014]. Along this line, the work in [Yu et al., 2012]
proposes a multiple kernel k-means clustering algorithm. In
[Gönen and Margolin, 2014], the kernel combination weights
are allowed to adaptively change with respect to samples to
better capture their individual characteristics. By replacing
the squared error in k-means with an `2,1-norm based one,
[Du et al., 2015] presents a robust multiple kernel k-means
algorithm that simultaneously finds the best clustering labels
and the optimal combination of multiple kernels. In [Lu et al.,
2014], kernel alignment maximization is employed to jointly
perform the k-means clustering and MKL. Our work in this
paper belongs to the second category.

Among the above clustering algorithms in the second cat-
egory, the kernel alignment maximization criterion for clus-
tering [Lu et al., 2014] has demonstrated promising perfor-
mance. Actually, according to [Liu et al., 2016], many clas-
sic MKC criteria such as [Yu et al., 2012; Gönen and Mar-
golin, 2014] can be interpreted from the perspective of kernel
alignment maximization, suggesting the importance of this
criterion for clustering. Nevertheless, although this align-
ment has the aforementioned good properties, we observe
that it is implemented in a global manner, which: i) rigidly
forces closer and farther sample pairs to be equally aligned
to the same ideal similarity, and inappropriately neglects the
intra-cluster variation of samples; and ii) is inconsistent with
a well-established concept that the similarity evaluated for t-
wo farther samples in a high dimensional space is less re-
liable due to the presence of underlying manifold structure.
As a result, maximizing global alignment could make these
pre-specified kernels less effectively utilized, and in turn ad-
versely affect the clustering performance.

To address these issues, we propose a novel MKC algo-
rithm with a “local” kernel alignment. In specific, this local
alignment only requires that the similarity of a sample to its
k-nearest neighbours be aligned with the ideal similarity ma-
trix. Such an alignment helps the clustering process to focus
on closer sample pairs that shall stay together, avoids involv-



ing unreliable similarity evaluation for farther sample pairs,
and also give the clustering process more flexibility to arrange
the farther pairs according to the nature of data distribution.
By this way, the local structure of the data can be well utilized
to produce better alignment for clustering. After that, the op-
timization objective of the proposed local kernel alignment
is carefully designed and an efficient algorithm with proved
convergence is developed to solve the resultant optimization
problem. Extensive experimental study has been conducted
on six MKL benchmark data sets to evaluate clustering per-
formance of the proposed algorithm. As indicated, our algo-
rithm significantly outperforms the state-of-the-art ones, val-
idating the effectiveness and advantage of the proposed local
kernel alignment maximization.

Related Work
Kernel k-means clustering (KKM)
Let {xi}ni=1 ⊆ X be a collection of n samples, and φ(·) :
x ∈ X 7→ H be a feature mapping which maps x onto a re-
producing kernel Hilbert spaceH. The objective of kernel k-
means clustering is to minimize the sum-of-squares loss over
the cluster assignment matrix Z ∈ {0, 1}n×k, which can be
formulated as the following optimization problem,

min
Z∈{0,1}n×k

n,k∑
i=1,c=1

Zic‖φ(xi)− µc‖
2
2 s.t.

k∑
c=1

Zic = 1, (1)

where nc =
∑n
i=1 Zic and µc = 1

nc

∑n
i=1 Zicφ(xi) are the

number and centroid of the c− th (1 ≤ c ≤ k) cluster.
The optimization problem in Eq.(1) can be equivalently

rewritten as the following matrix-vector form,

min
Z∈{0,1}n×k

Tr(K)− Tr(L
1
2Z>KZL

1
2 ) s.t. Z1k = 1n, (2)

where K is a kernel matrix with Kij = φ(xi)
>φ(xj), L =

diag([n−11 , n−12 , · · · , n−1k ]) and 1` ∈ R` is a column vector
with all elements 1.

The variables Z in Eq.(2) is discrete, which makes the opti-
mization problem very difficult to solve. However, this prob-
lem is usually approximated through relaxing Z to take ar-
bitrary real values. Specifically, by defining H = ZL

1
2 and

letting H take real values, we obtain a relaxed version of the
above problem.

min
H∈Rn×k

Tr
(
K(In −HH>)

)
s.t. H>H = Ik, (3)

where Ik is an identity matrix with size k × k. Noting that
Z>Z = L−1, it can be obtained that L

1
2Z>ZL

1
2 = Ik, and

this leads to the orthogonality constraint on H. Finally, one
can obtain the optimal H for Eq.(3) by taking the k eigenvec-
tors that correspond to the k largest eigenvalues of K.

Multiple kernel k-means clustering (MKKM)
In a multiple kernel setting, each sample has multi-
ple feature representations via a group of feature map-
pings {φp(·)}mp=1. Specifically, each sample is represent-
ed as φµ(x) = [µ1φ1(x)

>, µ2φ2(x)
>, · · · , µmφm(x)>]>,

where µ = [µ1, µ2, · · · , µm]> denotes the coefficients of
each base kernel that needs to be optimized during learning.
Correspondingly, the kernel function over the above mapping
function can be calculated as

κµ(xi,xj) = φµ(xi)
>φµ(xj) =

∑m

p=1
µ2
pκp(xi,xj). (4)

By replacing the kernel matrix K in Eq.(3) with Kµ com-
puted via Eq.(4), the following optimization objective is ob-
tained for MKKM,

min
H∈Rn×k,µ∈Rm

+

Tr
(
Kµ(In −HH>)

)
s.t. H>H = Ik, µ

>1m = 1.

(5)
This problem can be solved by alternately updating H and
µ: i) Optimizing H given µ. With the kernel coefficients
µ fixed, the H can be obtained by solving a kernel k-means
clustering optimization problem in Eq.(3); ii) Optimizing µ
given H. With H fixed, µ can be optimized via solving the
following quadratic programming with linear constraints,

min
µ∈Rm

+

∑m

p=1
µ2
pTr

(
Kp(In −HH>)

)
s.t. µ>1m = 1. (6)

As noted in [Yu et al., 2012; Gönen and Margolin, 2014],
using a convex combination of kernels

∑m
p=1 µpKp to re-

place Kµ in Eq.(5) is not a viable option, because this could
make only one single kernel be activated and all the others
assigned with zero weights. Also, other recent work using `2-
norm combination can be found in [Kloft et al., 2011; 2009;
Cortes et al., 2009].

Proposed Formulation
The Connection Between MKKM and Unsupervised
Kernel Alignment Maximization
As a well-established criterion, kernel alignment maximiza-
tion has been widely used to tune kernel parameters in super-
vised learning [Cortes et al., 2012]. Nevertheless, this criteri-
on is not readily applicable to clustering since the true labels
in unsupervised learning is absent. A promising remedy is to
update kernel coefficients by maximizing the alignment be-
tween the combined kernel Kµ and HH>, where H can be
treated as pseudo-labels in the last iteration [Liu et al., 2016].
In specific, the kernel alignment maximization for clustering
can be fulfilled as,

max
H∈Rn×k,µ∈Rm

+

〈Kµ,HH>〉F√
〈Kµ,Kµ〉F

s.t. H>H = Ik, µ
>1m = 1,

(7)
where 〈Kµ,HH>〉F = Tr(KµHH>), 〈Kµ,Kµ〉F =

µ̂>Mµ̂ with µ̂ = [µ2
1, · · · , µ2

m]> and M is a positive semi-
definite matrix with Mpq = Tr(K>p Kq) [Cortes et al., 2012].

Although Eq.(7) is not difficult to understood, directly op-
timizing it is difficult since it is a fourth-order fractional op-
timization problem. In the following, we derive a new and
related optimization problem from this kernel alignment max-
imization problem, based on the following two results.

Theorem 0.1 provides a second-order upper bound for the
denominator in Eq.(7).

Theorem 0.1 µ>Mµ is an upper bound of µ̂>Mµ̂.



Proof 1 For any positive semi-definite matrices Kp

and Kq , there exists matrices Up and Uq such that
Kp = UpU

>
p and Kq = UqU

>
q . Consequent-

ly, Mpq = Tr(K>p Kq) = Tr(UpU
>
p UqU

>
q ) =

Tr((U>p Uq)(U
>
p Uq)

>) = ‖U>p Uq‖2F ≥ 0, where
‖ · ‖F denotes Frobenius norm. Also, we have µ>Mµ =∑m
p,q=1Mpqµpµq ≥

∑m
p,q=1Mpqµ

2
pµ

2
q = µ̂>Mµ̂ since

µ ∈ Rm+ , µ>1m = 1 and Mpq ≥ 0. This completes the
proof.

Compared with µ̂>Mµ̂, µ>Mµ is much easier to handle s-
ince it leads to a well studied quadratic programming. More-
over, this term can be treated as a regularization on the kernel
coefficients to prevent µp and µq from being jointly assigned
to a large weight if Mpq is relatively high.

In addition, we find that minimizing the negative of nu-
merator, i.e., −Tr(KµHH>), together with µ>Mµ simul-
taneously cannot guarantee that the whole objective is convex
w.r.t µ with fixed H. This would affect the quality of solu-
tion at each iteration, leading to unsatisfying performance.
Fortunately, the following Theorem gives a good substitute
of −Tr(KµHH>) while with convexity.

Theorem 0.2 Tr
(
Kµ(In −HH>)

)
is convex w.r.t µ with

fixed H.

Proof 2 We have HH>H = H since H>H = Ik. By
denoting H = [h1, · · · ,hk], we can see that HH>hc =
hc, ∀ 1 ≤ c ≤ k. This means HH> has k eigenval-
ue with 1. Meanwhile, its rank is no more than k, which
implies its has n − k eigenvalue with 0. Correspondingly,
In−HH> has n−k and k eigenvalue with 1 and 0. As a re-
sult, Tr

(
Kp(In −HH>)

)
≥ 0. Tr

(
Kµ(In −HH>)

)
=∑m

p=1 µ
2
pTr

(
Kp(In −HH>)

)
, which is therefore convex

w.r.t µ. This completes the proof.

Actually, Tr
(
Kµ(In −HH>)

)
can be intuitively under-

stood by adding a prior
∑m
p=1 µ

2
pTr (Kp) on−Tr(KµHH>)

to guarantee its convexity with µ.
Based on the above-mentioned observations, instead of

maximizing the kernel alignment by solving a fractional op-
timization in Eq.(7), we turn to minimize the following,

min
H∈Rn×k,µ∈Rm

+

Tr
(
Kµ(In −HH>)

)
+
λ

2
µ>Mµ

s.t. H>H = Ik, µ
>1m = 1,

(8)

where λ is introduced to trade off the two terms.
The above results will be used in the next section to de-

velop our optimization problem for the proposed local kernel
alignment.

Multiple Kernel Clustering with Local Kernel
Alignment Maximization
As seen, Eq.(7) (or Eq.(8)) maximizes the alignment between
the combined kernel matrices Kµ and the ideal kernel matrix
HH> globally. By following the analysis in introduction,
such a global criterion: i) indiscriminately forces closer and
farther sample pairs to be equally aligned to the same ideal

Algorithm 1 Multiple Kernel Clustering with Local Kernel
Alignment Maximization
1: Input: {Kp}mp=1, k, λ and ε0.
2: Output: H and µ.
3: Initialize µ(1) = 1m/m and t = 1.
4: Generating S(i) for i-th samples (1 ≤ i ≤ n) by Kµ(1) .
5: repeat
6: K

(t)
µ =

∑m
p=1

(
µ
(t)
p

)2
Kp.

7: Update H(t) by solving Eq.(12) with given K
(t)
µ .

8: Update µ(t) by solving Eq.(13) with given H(t).
9: t = t+ 1.

10: until
(

obj(t−1) − obj(t)
)
/obj(t) ≤ ε0

similarity, and inappropriately neglects the intra-cluster varia-
tion of samples; and ii) is inconsistent with a well-established
concept that the similarity evaluated for two farther samples
in a high dimensional space is less reliable. These two draw-
backs could adversely impact the clustering performance. In
this paper, instead of enforcing the global alignment of al-
l samples, we propose to locally align the similarity of each
sample to its k-nearest neighbours with corresponding ide-
al kernel matrix, which is flexible and able to well handle the
intra-cluster variations. In specific, the local kernel alignment
for the i-th sample can be calculated as,

max
H∈Rn×k,µ∈Rm

+

〈K(i)
µ ,H(i)H(i)>〉F√
〈K(i)

µ ,K
(i)
µ 〉F

s.t. H>H = Ik, µ
>1m = 1,

(9)
where K

(i)
µ and H(i) are sub-matrix of Kµ and H whose

indices are specified by the τ -nearest neighbors of the i-th

sample, and M(i) is a matrix with M (i)
pq = Tr(K

(i)
p

>
K

(i)
q ).

By following the aforementioned analysis in subsection ,
Eq.(9) can be conceptually rewritten as,

min
H∈Rn×k,µ∈Rm

+

Tr
(
K(i)

µ (Iτ −H(i)H(i)>)
)
+
λ

2
µ>M(i)µ

s.t. H>H = Ik, µ
>1m = 1

(10)

where K
(i)
µ = S(i)>KµS

(i), H(i) = S(i)>H, S(i) ∈
{0, 1}n×τ is a matrix indicating the τ -nearest neighbors of
the i-th sample and Iτ is an identity matrix with size τ .

By taking over the local kernel alignment in Eq.(10) for
each sample and defining A(i) = S(i)S(i)>, we obtain the
objective function of our proposed algorithm as follows,

min
H∈Rn×k,µ∈Rm

+

∑n

i=1

[
Tr
(
Kµ

(
A(i) −A(i)HH>A(i)

))
+
λ

2
µ>M(i)µ

]
s.t. H>H = Ik, µ

>1m = 1

(11)

Alternate optimization
Although the kernel alignment is maximized in a localized
way, the resultant optimization problem in Eq.(11) is not al-
tered significantly and still easy to solve by existing off-the-
shelf packages. In specific, we design a two-step algorithm to



solve this problem alternately. (i) Optimizing H with fixed
µ. Given µ, H can be obtained by solving the following op-
timization problem,

max
H∈Rn×k

Tr
(
H>

∑n

i=1

(
A(i)KµA

(i)
)
H
)
s.t. H>H = Ik,

(12)
which is a standard kernel k-means clustering problem and
can be efficiently solved; (ii) Optimizing µ with fixed H.
Given H, the optimization in Eq.(11) w.r.t µ is a quadratic
programming with linear constraints, which essentially solves
the following problem,

min
µ∈Rm

+

1

2
µ> (2Z+ λM)µ s.t. µ>1m = 1, (13)

where Z = diag ([Tr (K1V) , · · · ,Tr (KmV)]), V =
n∑
i=1

(
A(i)

−A(i)HH>A(i)
)

and Mpq =
n∑
i=1

Tr
(
KpA

(i)KqA
(i)
)

.

In sum, our algorithm for solving Eq.(11) is outlined in Al-
gorithm 1, where obj(t) denotes the objective value at the t-th
iterations. It is worth pointing out that the neighborhood of
each sample is kept unchanged during the optimization. In
specific, the τ -nearest neighbors of each samples are mea-
sured by Kµ(1) . By doing so, the objective of Algorithm 1 is
guaranteed to be monotonically decreased when optimizing
one variable with the other fixed at each iteration. At the same
time, the whole optimization problem is lower-bounded. As
a result, the proposed algorithm can be guaranteed to be con-
vergent. We also record the objective at each iteration and
the results validate the convergence. The algorithm usually
converges in less than ten iterations in all of our experiments.

Experiments
Data sets
The proposed algorithm is experimentally evaluated on six
widely used MKL benchmark data sets shown in Table 1.
They are UCI-Digital1, Oxford Flower172, Protein fold pre-
diction3, YALE4, Oxford Flower1025 and Caltech1026.

Table 1: Datasets used in our experiments.
Dataset #Samples #Views #Classes

Digital 2000 3 10
Flower17 1360 7 17
ProteinFold 694 12 27
YALE 165 5 15
Flower102 8189 4 102
Caltech102 1530 25 102

For ProteinFold, we generate 12 base kernel matrices by
following [Damoulas and Girolami, 2008], where the second

1
http://ss.sysu.edu.cn/˜py/

2
http://www.robots.ox.ac.uk/˜vgg/data/flowers/17/

3
http://mkl.ucsd.edu/dataset/protein-fold-prediction

4
http://vismod.media.mit.edu/vismod/classes/mas622-00/datasets/

5
http://www.robots.ox.ac.uk/˜vgg/data/flowers/102/

6
http://mkl.ucsd.edu/dataset/ucsd-mit-caltech-101-mkl-dataset

order polynomial kernel and inner product (cosine) kernel are
applied to the first ten feature sets and the last two feature
sets, respectively. For YALE, five base kernel matrices are
constructed according to [Zhou et al., 2015]. For the rest of
the other data sets, all kernel matrices are pre-computed and
publicly downloaded from the above websites.

Compared algorithms
Many recently proposed method are compared, including

• Average multiple kernel k-means (A-MKKM): All
kernels are uniformly weighted to generate a new
kernel, which is taken as the input of kernel k-means.
• Single best kernel k-means (SB-KKM): Kernel
k-means is performed on each single kernel and the best
result is reported.
• Multiple kernel k-means (MKKM) [Huang et al.,

2012]: The algorithm alternately performs kernel
k-means and updates kernel coefficients.
• Localized multiple kernel k-means (LMKKM)

[Gönen and Margolin, 2014]: LMMKM combines the
kernels by sample-adaptive weights.
• Robust multiple kernel k-means (RMKKM) [Du

et al., 2015]: RMKKM improves the robustness of
MKKM by replacing the sum-of-squared loss with an
`2,1-norm one.
• Co-regularized spectral clustering (CRSC) [Kumar

and Daumé, 2011]: CRSC provides a co-regularization
way to perform spectral clustering.
• Robust multiview spectral clustering (RMSC) [Xia

et al., 2014]: RMSC constructs a transition probability
matrix from each single view, and uses them to recover
a shared low-rank transition matrix for clustering.
• Robust Multiple Kernel Clustering (RMKC) [Zhou

et al., 2015]: RMKC learns a robust yet low-rank kernel
for clustering by capturing the structure of noises in
multiple kernels.

The Matlab codes of KKM, MKKM
and LMKKM are publicly available at
https://github.com/mehmetgonen/lmkkmeans.
For RMKKM, CRSC, RMSC and RCE, we use their matlab
implementations from authors’ websites in our experiments.

Experimental settings
In all our experiments, all base kernels are first centered and
then scaled so that for all i and p we have Kp(xi,xi) = 1
by following [Cortes et al., 2012; 2013]. For all data set-
s, it is assumed that the true number of clusters is known
and set as the true number of classes. The parameters of
RMKKM, RMSC and RMKC are selected by grid search ac-
cording to the suggestions in their papers. For the proposed
algorithm, its regularization parameters λ and τ are chosen
from [2−15, 2−13, · · · , 215] and [0.05, 0.1, · · · , 0.95] ∗ n by
grid search, where n is the number of samples.

The widely used clustering accuracy (ACC), normalized
mutual information (NMI) and purity are applied to evalu-
ate the clustering performance. For all algorithms, we repeat



Table 2: ACC, NMI and purity comparison of different clustering algorithms on six benchmark data sets.
Datasets A-MKKM SB-KKM MKKM LMKKM RMKKM CRSC RMSC RMKC Proposed

ACC
Digital 88.75 75.40 47.00 47.00 40.45 84.80 90.40 88.90 96.25

Flower17 51.03 42.06 45.37 42.94 48.38 52.72 53.90 52.35 63.75
ProteinFold 28.10 33.86 27.23 23.49 30.98 34.87 33.00 28.82 37.90

YALE 52.12 56.97 52.12 53.33 58.79 55.15 56.36 56.97 64.24
Flower102 27.29 33.13 21.96 22.57 28.17 37.26 32.97 33.54 40.84
Caltech102 35.56 33.14 34.77 27.97 29.67 33.33 31.50 35.56 39.48

NMI
Digital 80.59 68.38 48.16 48.16 46.87 73.51 81.80 80.88 91.63

Flower17 50.19 45.14 45.35 44.12 50.73 52.13 53.89 50.42 59.61
ProteinFold 38.53 42.03 37.16 34.92 38.78 43.34 43.91 39.46 44.46

YALE 57.72 58.42 54.16 55.59 59.70 56.89 59.11 57.69 65.10
Flower102 46.32 48.99 42.30 43.24 48.17 54.18 53.36 49.73 57.60
Caltech102 59.90 59.07 59.64 55.17 55.86 58.20 58.40 59.90 62.67

purity
Digital 88.75 76.10 49.70 49.70 44.20 77.75 82.90 88.90 96.25

Flower17 51.99 44.63 46.84 45.81 51.54 56.47 53.24 53.01 63.82
ProteinFold 36.17 41.21 33.86 32.71 36.60 40.78 42.36 36.46 43.95

YALE 53.94 57.58 52.73 54.55 59.39 56.36 56.97 57.58 64.85
Flower102 32.28 38.78 27.61 28.79 33.86 44.08 40.24 38.87 48.21
Caltech102 37.12 35.10 37.25 29.41 31.70 35.75 33.27 37.12 41.83
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Figure 1: Clustering accuracy, NMI and purity comparison with different number of classes on Flower102 and Caltech102.

each experiment for 50 times with random initialization to re-
duce the affect of randomness caused by k-means, and report
the best result.

Experimental results
The ACC, NMI and purity of the above-mentioned algo-
rithms on the six data sets are reported in Table 2. We have

the following observations from these results:

• Our algorithm demonstrates the best clustering per-
formance in terms of clustering accuracy, NMI and
purity on all data sets. Taking the results in Table
2 as an example, it exceeds the second best one by
5.85%, 9.85%, 3.03%, 5.45%, 3.58% and 3.92% on
Digital, Flower17, ProteinFold, YALE, Flower102 and



Table 3: Aggregated ACC, NMI and purity comparison of different clustering algorithms on Flower102 and Caltech102.
Datasets A-MKKM SB-KKM MKKM LMKKM RMKKM CRSC RMSC RMKC Proposed

Flower102
45.21 42.08 39.08 38.56 43.33 46.67 52.89 46.25 59.54
61.62 57.22 57.35 57.06 59.24 61.08 67.51 62.20 71.24
47.54 44.28 41.48 41.53 45.04 48.42 55.59 48.53 61.36

Caltech102
41.18 40.26 39.50 37.88 37.99 41.49 38.64 42.00 47.11
57.68 56.83 56.01 55.01 54.19 57.43 56.74 58.35 61.92
43.38 42.37 41.77 39.72 39.98 43.53 41.13 44.34 48.75

Caltech102, respectively. Also, its superiority is also
confirmed from the NMI and purity reported in Table 2.

• The proposed algorithm significantly outperforms
exiting MKKM, which can be seen as a special case
of global kernel alignment. In specific, the clustering
accuracy of MKKM is only 47% on Digital, which
implies that it may even not work on this data set. In
contrast, our algorithm achieves 96.25%, which is the
best result among all the compared ones.

• As a strong baseline, A-MKKM usually demonstrates
comparable or even better performance than most of
algorithms in comparison. However, our algorithm
clearly outperforms this baseline on all data sets, which
indicates its superiority in clustering performance.

Table 2 also reports the comparison of NMI and purity.
Again, we observe that the proposed algorithm significantly
outperforms the compared ones. In all, these results have well
verified the effectiveness of maximizing the kernel alignment
in a local way.

To investigate the clustering performance with respect to
the number of classes, we select samples from the first
10, 20, · · · , 100 classes on both Flower102 and Caltech102,
where 20 and 15 samples are randomly selected for each
class. By this way, we generate ten data sets on Flower102
and Caltech102, respectively.

The ACC, NMI and purity of the above-mentioned algo-
rithms with different number of classes on Flower102 are
plotted in sub-figures 1(a), 1(b) and 1(c). As shown, our
algorithm (in red) consistently keeps on the top of all sub-
figures, indicating the best performance. Meanwhile, we al-
so find similar results from the results on Caltech102 in sub-
figures 1(d), 1(e) and 1(f). Moreover, we report the aggre-
gated ACC, NMI and purity of each algorithm, which is de-
fined as the mean of ACC (NMI, purity) on Flower102 or
Caltech102 with the number of classes varied in the range of
10, 20, · · · , 100, as shown in Table 3. Again, our algorith-
m is superior to other compared algorithms in terms of the
aggregated ACC, NMI and purity.

From the above experiments, we can conclude that the pro-
posed algorithm: i) effectively addresses the issues of indis-
criminately forcing all sample pairs to be equally aligned to
the same ideal similarity; and ii) well utilizes the local struc-
ture of data to significantly improve clustering performance.
Our local kernel alignment is flexible and allows the pre-
specified kernels to be aligned for better clustering, bringing
the significant improvements on clustering performance.
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Figure 2: (a) The effect of the number of neighbors τ , (b) The
regularization parameter λ on clustering accuracy, (c) The ob-
jective value of our algorithm at each iteration.

Parameter selection and Convergence
As can be seen in Eq.(11), our algorithm introduces the num-
ber of neighbors τ and regularization parameter λ. We then
experimentally show the effect of each parameter on the per-
formance of our algorithm by fixing the other on Digital.

Figure 2(a) plots the ACC of our algorithm by varying τ in
a large range [0.05, 0.1, · · · , 0.95] ∗ n with λ = 2−1. From
this figure, we observe: i) with the increase of τ , the ACC
first maintains on a high value and then decreases, validating
the effectiveness of maximizing the local kernel alignment;
and ii) our algorithm shows stable performance across a wide
range of τ . Similarly, Figure 2(b) presents the ACC of our
algorithm by varying λ from 2−15 to 215 with τ = 0.05.
Again, our algorithm demonstrates stable performance across
a wide range of λ. These results indicate that the performance
of our method is stable across a wide range of parameters.

An example of the objective value of our algorithm at each
iteration is plotted in Figure 2(c). As observed from this ex-
ample, the objective value is monotonically decreased and the
algorithm quickly converges in less than ten iterations.

Conclusions
This work proposes the multiple kernel clustering algorithm
by maximizing the kernel alignment locally—a more flexible
and effective algorithm which well handles the issue of indis-
criminately forcing all sample pairs to be equally aligned to
the same ideal similarity and integrates the underlying local
structure of data to achieve better alignment for clustering. A
two-step algorithm with proved convergence is designed to
solve the resultant optimization problem. Experimental re-
sults clearly demonstrates the superiority of our algorithm. In
the future, we plan to extend our algorithm to a more gen-
eral framework, and use it as a platform to revisit existing
multiple kernel clustering algorithms and uncover their rela-
tionship. Meanwhile, designing an sample-specific penalty
for each sample is also worth exploring.
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