Decline in the species richness contribution of Echinodermata to the macrobenthos in the shelf seas of China

Shaofei Jin a,c, Yongli Wang a, Jiangjiang Xia a, Ning Xiao b, Junlong Zhang b, Zhe Xiong a,*

a Key Laboratory of Regional Climate-Environment for Temperate East Asia, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
b Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
c University of Chinese Academy of Sciences, Beijing 100049, China

A R T I C L E I N F O

Article history:
Received 8 April 2015
Received in revised form 1 August 2015
Accepted 11 August 2015
Available online xxxx

Keywords:
Echinoderms
Species richness
Macrobenthos
China seas
Ocean warming
Ocean acidification

A B S T R A C T

Echinoderms play crucial roles in the structure of marine macrobenthic communities. They are sensitive to excess absorption of CO2 by the ocean, which induces ocean acidification and ocean warming. In the shelf seas of China, the mean sea surface temperature has a faster warming rate compared with the mean rate of the global ocean, and the apparent decrease in pH is due not only to the increased CO2 absorption in seawater, but also eutrophication. However, little is known about the associated changes in the diversity of echinoderms and their roles in macrobenthic communities in the seas of China. In this study, we conducted a meta-analysis of 77 case studies in 51 papers to examine the changes in the contribution of echinoderm species richness to the macrobenthos in the shelf seas of China since the 1980s. The relative species richness (RSR) was considered as the metric to evaluate these changes. Trends analysis revealed significant declines in RSR in the shelf seas of China, the Yellow Sea, and the East China Sea from 1997 to 2009. Compared with the RSR before 1997, no significant changes in mean RSR were found after 1997, except in the Bohai Sea. In addition, relative change in the RSR of echinoderms and species richness of macrobenthos led to more changes (decrease or increase) in their respective biomasses. Our results imply that changes in species richness may alter the macrobenthic productivity of the marine benthic ecosystem.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Carbon dioxide (CO2) emissions from anthropogenic activity have, since the industrial revolution, increased the atmospheric CO2 concentration from 280 ppm to 391 ppm (Le Quéré et al., 2013; Stocker et al., 2013). Due to the greenhouse effect of CO2, this increased atmospheric CO2 has led to sea surface temperature (SST) increasing by 0.74 °C, and sea surface pH decreasing by 0.1 (Orr et al., 2005; Stocker et al., 2013). The increasing SST and decreasing pH have simultaneously resulted in ocean warming and ocean acidification (OA) (Doney et al., 2009; Stocker et al., 2013).

Echinoderms play crucial roles in the structure of marine benthic ecosystems by occupying a large proportion of the total biomass of the macrobenthos (Ambrose et al., 2001; Utichi et al., 2009), and by occasionally booming (Utichi et al., 2009). Besides, they also play important roles in the global carbon cycle due to their global distribution and fine calcium carbonate (CaCO3) skeletons (Lebrato et al., 2010). The echinoderms’ CaCO3 skeletons are produced through biological calcification processes, which are strongly affected by CaCO3 saturation (Ω). The Ω is calculated by the equation $\Omega = X_{sp} / K_{sp}$, where X_{sp} is the calcium ion concentration, K_{sp} is the apparent stoichiometric solubility product. Where $\Omega < 1.0$, the seawater will be corrosive for the echinoderm skeletons. Among the three parameters in the equation, $[CO_3^{2-}]$ is the most variable and sensitive to excess anthropogenic CO2. High CO2 absorption by seawater, i.e. OA, will consequently lead to lower $[CO_3^{2-}]$ and Ω. The OA will affect all oceanic organisms, but particularly calcifying organisms (Orr et al., 2005; Wood et al., 2008). As one of the calcifying functional communities, echinoderms are a good indicator to explore the responses to OA (Dupont et al., 2010b; Guinotte and Fabry, 2008; Wittmann and Pörtner, 2013). Based on experimental results using Echinodermata individuals, their responses are known to vary among different species and different life stages (Dupont et al., 2010a, 2008, 2010b; Hendriks and Duarte, 2010; Kurihara, 2008; Ries et al., 2009): e.g., size reduction (Brennand et al., 2010; Chan et al.,...
increased calcification at a cost of muscle mass (Wood et al., 2011, 2008); OA resistance (Catarino et al., 2012; Hendriks et al., 2010), and complex responses under ocean warming (Brennand et al., 2010; Gooding et al., 2009; Harvey et al., 2013; Kroeker et al., 2013). In terms of the species composition of Echinodermata, OA could reduce the species richness (Hale et al., 2011; Wootton et al., 2008).

To date, 591 taxa of echinoderms have been recorded in Chinese seawaters (Liao and Xiao, 2011; Liu, 2013), but more new records are continually being reported (Xiao and Liao, 2013). Among the seas of China, the continental shelf areas have been intensively surveyed since the 1980s (Liu, 2013, 2011). However only a small number of studies have reported the changes in biomass or species richness of echinoderms in Chinese seas (Li, 2011; Zhang et al., 2012; Zhou et al., 2007). For the Bohai Sea, compared with the community structure in the 1980s, the abundance of biomass of echinoderms has decreased, and Echinocardium cordatum disappeared in the 1990s (Zhou et al., 2007). For the Yellow Sea, the average biomass of echinoderms in the 1990s was less than that in the 1950s, and no sea urchins were found in the eurythermal community in the 1990s (Zhang et al., 2012). These results reveal detailed changes in two different periods through several independent surveys. However, there are inherent fluctuations in the biomass and species richness of the macrobenthos (Gray, 2002). Thus, it is hard to assess the trends in these changes over a long period by using small-sample comparisons. Simultaneously, the marine environment changes as a result of commercial activities (e.g., infrastructure construction, ocean exploration) (Liu and Diamond, 2005), fishing (especially mariculture) (Cao et al., 2007), and climate changes (e.g. ocean warming, OA) (Belkin, 2009; Cai et al., 2011; Zhai et al., 2014, 2012). All of these factors may affect macrobenthic biodiversity (Paik et al., 2008). Generally, commercial activities and mariculture only impact biodiversity at relatively small and regional scales, but climate changes may have vast effects on a broad scale, for instance covering an entire shelf sea area. The mean SST in the East China Sea and YS increased by 1.2°C over the past several decades on the mean annual salinity is 30‰. The Yellow Sea is a marginal sea of the Pacific Ocean, located between 31°43′–39°02′ N and 119°10′–126°17′E, with a maximum depth of 152 m and covering 380,000 km². The seal/s surface temperature features broad ranges: summer SST can reach 24 °C, while winter SST can be 0–2 °C. The mean annual salinity is 30‰. The Yellow Sea is a marginal sea of the Pacific Ocean, located between 31°43′–39°02′ N and 119°10′–126°17′E, with a maximum depth of 152 m and covering 380,000 km². The range of sea water temperature is from 15 °C to 24 °C, and the mean salinity is 32‰. The East China Sea is also a marginal sea of the Pacific Ocean, located between 23°00′–33°10′N and 117°11′–131°00′E, with a mean depth of 349 m and the continental shelf region covering 550,000 km². The mean annual SST is 9.2 °C and the mean salinity is 31–32‰. These three seas, studies of Jiaozhou Bay and Changjiang river estuary (including the adjacent area) were also analyzed due to their special locations in China. Jiaozhou Bay (35°58′–36°18′N, 120°0′–120°23′E) is an inlet of the Yellow Sea, covering an area of 374.4 km². Situated in this bay is the only long-term temperate marine ecological research station, Jiaozhou Bay Marine Ecosystem Research Station, Chinese Academy of Sciences, which belongs to the Chinese Ecosystem Research Network (CERN) (Fig. 1b). Meanwhile, Changjiang river estuary is the largest river estuary in China, with an area of 99.6 km² (length: about 110 km; width: about 90 km; Fig. 1c). The Yangtze River Delta, developed along the estuary, has become the largest economic zone in China. An SST warming rate between 1982 and 2006 of eight times the global mean SST trend has been reported for this area (Belkin, 2009).

2.2. Study area

We considered studies conducted over the shelf seas (water depth <200 m) of China, covering the Bohai Sea, Yellow Sea, and East China Sea (Fig. 1a). The South China Sea was not considered due to only three papers met our criteria (SM1). It is hard to obtain acceptable results by three papers.

The Bohai Sea is a shallow inner gulf, located between 37°07′–41°00′N and 117°35′–121°10′E, with a maximum depth of 38 m and covering 78,000 km². The sea water temperature features broad ranges: summer SST can reach 24 °C, while winter SST can be 0–2 °C. The mean annual salinity is 30‰. The Yellow Sea is a marginal sea of the Pacific Ocean, located between 31°43′–39°02′ N and 119°10′–126°17′E, with a maximum depth of 152 m and covering 380,000 km². The range of sea water temperature is from 15 °C to 24 °C, and the mean salinity is 32‰. The East China Sea is also a marginal sea of the Pacific Ocean, located between 23°00′–33°10′N and 117°11′–131°00′E, with a mean depth of 349 m and the continental shelf region covering 550,000 km². The mean annual SST is 9.2 °C and the mean salinity is 31–32‰.

Besides these three seas, studies of Jiaozhou Bay and Changjiang river estuary (including the adjacent area) were also analyzed due to their special locations in China. Jiaozhou Bay (35°58′–36°18′N, 120°0′–120°23′E) is an inlet of the Yellow Sea, covering an area of 374.4 km². Situated in this bay is the only long-term temperate marine ecological research station, Jiaozhou Bay Marine Ecosystem Research Station, Chinese Academy of Sciences, which belongs to the Chinese Ecosystem Research Network (CERN) (Fig. 1b). Meanwhile, Changjiang river estuary is the largest river estuary in China, with an area of 99.6 km² (length: about 110 km; width: about 90 km; Fig. 1c). The Yangtze River Delta, developed along the estuary, has become the largest economic zone in China. An SST warming rate between 1982 and 2006 of eight times the global mean SST trend has been reported for this area (Belkin, 2009).

2.3. Relative species richness

Analyzing the species lists from each cruise would be the best way to examine the changes in echinoderms over the long term (Gotelli and Colwell, 2001; Hamilton, 2005); however, in practice, this is virtually impossible to achieve because of the lack of detail in the species composition information in the published studies. More specifically, it is difficult to remove duplicate species records from different cruises if the species lists of each cruise are not presented. Indeed, only a few studies (8 of the 51 papers covered in Web of Science using the following search criteria: “Title-Abstract t-Key” (echinoderm OR macrobenth) AND “Title-Abstract-Key” (abundance OR species OR biomass OR weight) AND “Title-Abstract-Key” (“China sea” OR “Bohai Sea” OR “Yellow Sea” OR “South China Sea” OR “East China Sea”) on November 10, 2013. In total, 247 papers (177 Chinese and 70 English) were returned. Then, papers were selected based on their ability to meet the following three criteria. First, the macrobenthos must have been studied using a specific quantitative method: the specimens must have been collected using a 0.1 m² box-corer, sieved with a mesh of 0.5 mm aperture, and preserved in 75% ethanol. Second, the survey must have been carried out far away from any intensive human activity regions, e.g. mariculture, ocean infrastructure construction, ocean exploration platforms etc. And third, the study must have reported the species numbers of echinoderms and total macrobenthos. Following the application of these criteria, 51 papers containing 77 datasets on relative species richness (RSR) were obtained (see Supporting Material 1 (SM1), Supporting Material 2 (SM2); SM1 for the datasets and SM2 for the selected paper references).

2. Materials and methods

2.1. Database development

We searched for studies reporting species numbers of echinoderms via the CNKI (National Knowledge Infrastructure) and ISl Please cite this article in press as: Jin, S., et al. Decline in the species richness contribution of Echinodermata to the macrobenthos in the shelf seas of China. J. Phys. Chem. Earth (2015), http://dx.doi.org/10.1016/j.pce.2015.08.002
this study) listed their species checklists. Furthermore, according to species–area relationship theory (Gray, 2002), the absolute number of species will bear a strong relationship with the specific area surveyed, which reduces the confidence in using total species number methods to obtain trends in species for an entire shelf sea region of China.

In this study, relative species richness (RSR) is considered as a new metric to investigate the species changes of echinoderms relative to the macrobenthos as a whole. The RSR was calculated as follows:

\[\text{RSR} = \frac{\text{species (echinoderms)}}{\text{species (macrobenthos)}} \]

where species (echinoderms) and species (macrobenthos) are the number of species of echinoderms and total macrobenthos in one independent survey, respectively. This metric can be viewed as the degree of “species ratio” relative to the total macrobenthos community. This species ratio represents the species richness contribution of echinoderms to the macrobenthos as a whole.

Time series were extracted from the survey data for 1997–2009, enabling us to analyze the trend in the contribution of echinoderm species richness to the macrobenthos during this period. In addition, comparisons between the contribution before 1997 (1980–1997) and after 1997 were conducted.

To investigate the relationship between changes in species richness and changes in biomass, we used the following two equations for echinoderms and the macrobenthos, respectively:

Relative ratio for echinoderms
\[\text{Relative ratio for echinoderms} = \frac{\text{abs} \left(\frac{\text{Bio} - \text{mean}(\text{Bio})}{\text{mean}(\text{Bio})} \right)}{\frac{\text{RSR} - \text{mean}(\text{RSR})}{\text{mean}(\text{RSR})}} \]

Relative ratio for macrobenthos
\[\text{Relative ratio for macrobenthos} = \frac{\text{abs} \left(\frac{\text{Bio} - \text{mean}(\text{Bio})}{\text{mean}(\text{Bio})} \right)}{\frac{\text{Sp} - \text{mean}(\text{Sp})}{\text{mean}(\text{Sp})}} \]

where Bio means the biomass of echinoderms and macrobenthos, and Sp means the species number of macrobenthos.
2.4. Data analysis

The station map was produced using ODV 4.7.1 (Schlitzer, 2015). All statistics (t-test, linear model) and other plots were performed using R 3.1.3 (R Core Team, 2015).

3. Results

3.1. Changes in RSR in different regions and periods

There were significant declining trends in the RSR for the shelf seas of China (Fig. 2a), for the Yellow Sea (Fig. 2b), and for the East China Sea (Fig. 2c) from 1997 to 2009. During this period, for all shelf seas of China, the decreasing rate was 0.35% per year; for the Yellow Sea, it was 0.25% per year; and for the East China Sea, 0.83% per year. The RSR in the Bohai Sea was lacking from 2000 to 2005, and thus the time series trend was not calculated (Fig. 2d). However, for the Bohai Sea, the mean RSR was 9.38% (±3.50%) in 1997, 4.20% (±1.16%) in 2008, and 2.56% in 2009.

No significant differences were found in the RSR before and after 1997 all shelf seas of China (P = 0.329), the Yellow Sea (P = 0.200), and the East China Sea (P = 0.076) (Fig. 3a–c). The mean values of RSR before and after 1997, for all shelf seas of China, were 7.51% and 5.86%, respectively (Fig. 3a); for the Yellow Sea, they were 5.25% and 4.71%, respectively (Fig. 3b); for the East China Sea, 7.54% and 6.17%, respectively (Fig. 3c); and for the Bohai Sea, 4.23% and 7.34% (P = 0.026), respectively (Fig. 3d).

No significant changes in RSRs (P = 0.679) were found in Jiaozhou Bay from 1997 to 2007 (Fig. 4a). Owing to the lack of data in the Changjiang river estuary, the trends in RSR were not calculated, but the mean RSR in this region in 2004, 2005 and 2006 was 3.87%, 5.21% and 7.83%, respectively (Fig. 4b). The mean RSR before 1997 in Jiaozhou Bay (5.25%) was significantly higher than the value after 1997 (4.38%) (t-test, P = 0.020) (Fig. 4c). The mean RSR before 1997 in the Changjiang river estuary was 7.32%, while the value after 1997 was 5.05% (Fig. 4d).

3.2. Relationships between changes in RSR and changes in biomass

The relationships between species richness and production were tested using a linear model. High correlation was found

![Graphs showing trends in RSR from 1997 to 2009 for different regions.](image-url)

Fig. 2. Trends in RSR from 1997 to 2009. Solid lines are the fitted lines of the trend, and error bars represent ±1 standard error of the mean. (a) All shelf seas of China (R = 0.61, P = 0.027, slope = -0.35%); (b) Yellow Sea (R = 0.67, P = 0.011, slope = -0.25%); (c) East China Sea (R = 0.72, P = 0.028, slope = -0.83%); (d) Bohai Sea.

![Graphs showing comparisons between RSR before and after 1997.](image-url)

Fig. 3. Comparisons between the RSR before and after 1997 (The ‘*’ represents a significant difference at P < 0.05. (a) all shelf seas of China; (b) Yellow Sea; (c) East China Sea; (d) Bohai Sea. Error bars represent ±1 standard error of the mean.

![Graphs showing trends in RSR from 1997 to 2009 for Jiaozhou Bay and Changjiang river estuary.](image-url)

Fig. 4. Trends in RSR from 1997 to 2009 for (a) Jiaozhou Bay and (b) Changjiang river estuary. Solid lines are the fitted trend lines, and error bars represent ±1 standard error of the mean. Comparisons between RSR before and after 1997 for (c) Jiaozhou Bay and (d) Changjiang river estuary. The ‘*’ represents a significant difference at P < 0.05.
between the species richness of echinoderms (SE) and the species richness of macrobenthos (SM), and between the biomass of echinoderms (BE) and the biomass of macrobenthos (BM). In terms of the correlation between SE and SM, the value was 0.64 ($P < 0.001$) (Fig. 5b and e); while for that between BE and BM, the value was 0.61 ($P < 0.001$) (Fig. 5i and o). If we did not consider the effects of environment change on RSR, then an acceptable linear regression equation could be obtained between SE and SM: $SE = 4.96 \times SM$ ($P < 0.001$). Similarly, an acceptable equation between BE and BM was $BE = 24.85 \times BM$ ($P < 0.001$). However, no significant correlations were found between SE and BE/BM, or between SM and BE/BM (Fig. 5).

In addition, the relative ratio was also used to test the relationship between the species richness and the production (biomass). Where the absolute value of the relative ratio was greater than 1, this indicated the change in species richness could induce more change in biomass. To remove the effect of sample number (see the station numbers in the Supporting Material 1), the RSR as a standardized value was used for echinoderms. The relative ratio for macrobenthos was significantly greater than 1 (one sample test, mean of relative ratio = 1.61, $t = 3.03$, df = 42, $P = 0.004$) between the relative changes of species richness and relative changes of biomass (Fig. 6a). For the echinoderms, the relative ratio was significantly greater than 1 (mean of relative ratio = 2.50, $t = 4.71$, df = 43, $P < 0.001$) between the relative changes of RSR and relative changes of biomass (Fig. 6b).

3.3 Changes in the species numbers in different regions and periods

Since the numbers of species of echinoderms and macrobenthos were extracted from the independent studies in the literature, the maximum species number in one report represented the lowest species number for one region over a particular period. The maximum species number of echinoderms over the period after 1997 was more than the value before 1997 for all the shelf seas of China, the Yellow Sea, the East China Sea, and the Bohai Sea (Table 1). Meanwhile, for the macrobenthos species number, only the maximum after 1997 in the East China Sea was more than the value before 1997; the values in the Yellow Sea and Bohai Sea were less than those in the period before 1997, and the value for all shelf seas of China did not change (Table 1). Compared with the mean species number before 1997, for the macrobenthos, there was a lower mean species number after 1997 in all region except the East China Sea; for the echinoderms, there was a lower mean species number for all shelf seas of China, and the Yellow Sea, but there was no change in the East China Sea and Bohai Sea (Table 1).

4. Discussion

Marine biodiversity in Chinese waters is facing multiple threats (Liu, 2013). Despite extensive investigations showing the recorded species richness to have increased (Liu, 2013, 2011), it is the changes in the contributions of specific taxonomic groups to total species richness in different periods are unclear. According to our study, the RSR of echinoderms declined significantly from 1997 to 2009 in all shelf seas of China, the Yellow Sea, and the East China Sea (Fig. 2). Using a new metric (RSR), our study is the first to document a decrease in the contribution of echinoderm species number to the total macrobenthos in the regions mentioned above.

Previous studies have shown that the biomass and species richness of echinoderms declined between the 1950s and the 1980s in the southern Yellow Sea (Zhang et al., 2012), between the 1980s and 1990s in the Bohai Sea (Zhou et al., 2007), between the 1990s and 2000s in Jiaozhou Bay (Bi et al., 2001; Li et al., 2004, 2002; Wang et al., 2011), and between the 1950s and 2000s in Changjiang river Estuary (Liu et al., 2008). However, these studies only compared the mean/raw values, and did not conduct statistical tests. In our study, the statistical tests showed there were no significant changes in the RSR mean values before and after 1997 in the shelf seas of China, apart from in the Bohai Sea (Fig. 3). Although most previous results have indicated a decrease in the species number of Echinodermata, according to our results this did not change the contribution of Echinodermata to the total macrobenthos species richness.
Wang et al. (2011) reported that, for Jiaozhou Bay, the changes in biodiversity from 2000 to 2009 showed there were no changes in the contribution of echinoderm species number to the total macrobenthos. The integration of multiple RSR results in our study illustrated the same trends (Fig. 4a). Furthermore, the finding that RSR decreased significantly after 1997 compared with before 1997 addressed the changes in the contribution of echinoderm species richness statistically (Fig. 4c). In contrast, despite long-term interest in Changjiang river estuary, only three quantitative studies were carried out between 1997 and 2009 (Fig. 4b). Hence, we suggest more attention should be paid to this region, especially given that the SST in the estuary has been shown to possess a high warming rate of 1.0 °C/decade (Belkin, 2009), which is seven times faster than the global mean SST rate of warming. Besides warming, other threats [e.g. acidification (Cai et al., 2011), eutrophication (Chai et al., 2006), overexploitation (Liu, 2013), and pollution (Li and Dag, 2004)] might also impact the biodiversity of this region.

The relationship between biodiversity and production is a basic ecological issue (Loreau et al., 2001). We did not find any linear relationship between species richness (echinoderms or macrobenthos) and their biomass (Fig. 5). This result was consistent with previous findings using meta-analysis conducted by Stachowicz et al. (2007), who reported the diversity of phytoplankton or sessile animals to possess weak correlation with production or biomass. In addition, our study found that the changes in relative species richness of macrobenthos and echinoderms caused more relative changes (decrease or increase) in their biomass (Fig. 6). This implied that changes in specie richness impact the stability of biomass. Several previous experimental studies have proposed that higher biodiversity increases the stability of terrestrial and marine production (Emmett Duffy et al., 2003; Stachowicz et al., 2002; Tilman, 1996, 1999; Tilman et al., 2001). Due to the high proportion of the total macrobenthos biomass accounted for by the echinoderms, the more relative change in biomass may imply an alteration to dominant species, as empirical evidence suggests that key species with high genetic or phenotypic diversity may stabilize the marine ecosystem (Duffy and Stachowicz, 2006).

Besides the relative change in the contribution of echinoderm species richness, species records for echinoderms and macrobenthos in Chinese seas have increased over the past 60 years, due to extensive surveys (Liao and Xiao, 2011; Liu, 2013, 2011). Our study also showed that the maximum species number from individual surveys after 1997 was more than that before 1997 (Table 1). Broader and more extensive investigations may result in more species being identified. Meanwhile, over the past several decades, the marine biodiversity of Chinese seas has been threatened by environmental changes caused by overexploitation, environmental deterioration, and climate changes (Cao et al., 2007; Liu, 2013). For echinoderms in the seas of China, 53 through 150 species of Holothurids have been considered endangered (Liu, 2013; Wang and Xie, 2004). Our results also showed that the mean species number after 1997 was less than that before 1997. This suggests a decrease in biodiversity has occurred.

5. Conclusion

Our results show that the contribution of echinoderm species richness to total macrobenthos diversity has decreased significantly in the shelf seas of China during the past decade. Moreover, these changes have altered the echinoderm/macrobenthic productivity of the marine benthic ecosystem. Although the lack of other environmental variables limited further discussion regarding the impacts of these changes, this study is nevertheless important because of its implications in terms of the response of calcified organisms to climate changes. Furthermore, in the future, more attention should be paid to the changes in the ecosystem function of these organisms, since the relationships between species richness changes and production changes remain unclear.

Acknowledgments

The authors thank two anonymous reviewers for their valuable suggestions on the original manuscript. This study was financially supported by the National Natural Science Foundation of China (Grant Nos. 91425304 and 31170508), and the National Key Basic Research Development Plan of China (“973” Projects) (Grant No. 2012CB955700).

Appendix A. Supplementary material

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.pce.2015.08.002.

References

