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Abstract—With the prevalence of Android-based mobile de-
vices, automated testing for Android apps has received increasing
attention. However, owing to the large variety of events that
Android supports, test input generation is a challenging task.
In this paper, we present a novel approach and an open source
tool called EHBDroid for testing Android apps. In contrast to
conventional GUI testing approaches, a key novelty of EHBDroid
is that it does not generate events from the GUI, but directly
invokes callbacks of event handlers. By doing so, EHBDroid can
efficiently simulate a large number of events that are difficult to
generate by traditional UI-based approaches. We have evaluated
EHBDroid on a collection of 35 real-world large-scale Android
apps and compared its performance with two state-of-the-art UI-
based approaches, Monkey and Dynodroid. Our experimental
results show that EHBDroid is significantly more effective and
efficient than Monkey and Dynodroid: in a much shorter time,
EHBDroid achieves as much as 22.3% higher statement coverage
(11.1% on average) than the other two approaches, and found 12
bugs in these benchmarks, including 5 new bugs that the other
two failed to find.

Index Terms—Android, automated testing, event generation,
event handlers

I. INTRODUCTION

Despite the popularity of mobile apps, testing them faces
significant challenges. The difficulty lies in two main aspects.
First, the space of events is often enormous. There could be
an infinite number of UI events if the app’s state is cyclic,
and there are more than a hundred different kinds of system
broadcasting events supported by Android currently [1]. It
is impractical to generate all possible events and their per-
mutations. Second, many UI events (e.g., drag, hover) and
most system and inter-app events, are difficult to generate.
For example, generating a drag event requires that the drag
should start at a certain position and end at another, and only
when the distance between the two positions is larger than a
certain value, can the event be regarded as a successful drag.
In addition, certain UI events can only be triggered if their pre-
conditions are satisfied (e.g., inputs to all the relevant widgets
are provided) [2]. The probability to simulate all combinations
of the widget inputs is very small [3]. Thus, it is hard to
simulate such UI events thoroughly. For many system events,
proper data (e.g., arguments) needs to be constructed and
dispatched correctly to the app. For inter-app events, they can
only be triggered by external apps under certain conditions.

Although mobile app testing has attracted a large body
of active research [1], [2], [4]–[13], existing approaches and
tools are still unsatisfactory. According to a recent study [14],
most existing approaches are UI-based, and they are either
too slow to generate events, or cannot effectively generate
certain events. More efficient and effective automated testing
techniques are required to ensure correctness, reliability, and
security of mobile apps.

In this paper, we present a new approach and an open source
tool, called EHBDroid (Event Handler Based), for testing
Android apps. EHBDroid is implemented and evaluated for
Android. However, the idea of event handler-based testing is
not limited to Android, but general to event-driven systems.
EHBDroid is based on a simple, but important observation:
In event-driven systems, there often exists a correspondence
between an event and an event handler. The events that
occur on the UI are eventually passed to and are handled by
their event handlers, e.g., callback functions in Android [15].
Hence, instead of attempting to generate UI events, we can
trigger their event handlers (callbacks) directly. The callback
instrumentation can be inserted into the app via either static
analysis or code re-writing at class loading time.

There are several advantages of EHBDroid over traditional
UI-based approaches. First, it can invoke a set of callback
functions quickly because the testing does not need to wait
for the latency induced by GUI and the cost of message
passing in the system. Second, it can test the callback functions
thoroughly even if some of them cannot be easily invoked
through the GUI. For many events such as system events and
complex UI events, it is much easier to generate calls to their
event handlers directly than to generate events from the UI.
Consequently, it provides high code coverage in a short testing
time. Third, the events for the test are systematically generated
and are not redundant, i.e., the events do not invoke the same
functions repeatedly.

Although the basic idea of EHBDroid is simple, we are not
aware of any previous research or infrastructure that explored
this idea. A most related tool is Dynodroid [1]. It instruments
the Android framework and relies on the VM to generate a
considerable number of UI inputs and system-level events that
are relevant for the apps, and uses a pre-configured selection
strategy to select an event to execute. However, Dynodroid
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is less effective and efficient than EHBDroid because of its
black-box nature, i.e., it only generates a limited range of
events, and for each generated event it relies on the Android
framework to pass the event to the event handler, rather than
invoking the event handler directly.

To realize EHBDroid, there are several challenges:

1) How to identify the event handlers in Android and
construct their invocations?

2) How to construct valid runtime event data passed to the
event handlers?

3) How to systematically invoke the event handlers such
that the app behavior can be effectively tested without
redundant exploration?

These challenges are often specific to the implementation of
the event-driven framework. For the first challenge, we identify
three registration patterns for event handlers in Android.
Based on these patterns, EHBDroid is able to automatically
instrument all 58 callbacks in the Android API. For the second
challenge, by using default value for data of primitive types
and runtime instances of event sources (which are available
in the app context) for those of reference types, EHBDroid
constructs many meaningful runtime arguments for invoking
the callbacks. For the third challenge, instead of invoking those
callbacks randomly, EHBDroid performs an activity-directed
depth-first search to effectively traverse different activities
without redundant exploration.

We implement EHBDroid as an automated testing tool
based on the Soot framework [16]. EHBDroid is open source
and is publicly available on Github: 1. EHBDroid has been
evaluated on 35 real-world Android apps from F-droid [17]
and Google Play store [18], and compared with two state-
of-the-art UI-based testing tools, Monkey [19] and Dyn-
odroid [1]. The results suggest that EHBDroid is significantly
more efficient and effective than the other two approaches.
EHBDroid achieves as much as 22.3% higher statement
coverage (11.1% on average) than Monkey and Dynodroid
for these apps. For all apps, EHBDroid can quickly cover
all activities in ten minutes, whereas for many apps Monkey
and Dynodroid either cannot generate events to cover certain
activities or get a much lower code coverage even in an hour.
Besides, EHBDroid detected 12 bugs in these apps, 5 of which
were not found by the other two.

To summarize, we make the following contributions:

• We develop an event handler-based testing approach,
EHBDroid, for testing Android apps without the need
to generate events. The approach of EHBDroid applies
not only to Android apps, but also to general event-driven
systems. Though conceptually simple, to the best of our
knowledge, EHBDroid is the first event handler-based
approach for Android app testing.

• We present a general and systematic testing strategy to
simulate UI, system, and inter-app events in Android by
instrumenting and automatically invoking their callbacks.

1https://github.com/wsong-nj/EHBDroid

TABLE I
ANDROID EVENT TYPES AND THEIR REGISTRATION PATTERNS

XXXXXXXXEvent
Pattern Static (a) Static (b) Dynamic Overridden

UI
√ √ √

System Receiver
√ √

Service
√ √

Inter-app
√

We have successfully instrumented all 58 callbacks in
Android API with valid arguments.

• We present an open source tool that realizes our approach
and we have conducted extensive experiments showing
significant performance improvements of our approach
over the state-of-the-art.

The remainder of the paper is organized as follows. Sec-
tion II introduces the background on Android event regis-
trations. Section III presents our approach. Section IV intro-
duces the implementation of EHBDroid. Section V evaluates
EHBDroid. Section VI discusses limitations of EHBDroid.
Section VII reviews related work and Section VIII concludes.

II. ANDROID EVENT REGISTRATION

Android apps are event-driven programs with abundant UI
events, system events, and inter-app events. Based on our
study of the Android API, we identify three event registration
patterns (cf. Table I), which are useful for the instrumentation
of our approach.

Pattern 1 (Static registration pattern): A static registration
pattern is defined as s.elm, where s is an event source declared
in the XML resource file, and elm represents an element
(method or field) of s declared in the same file:
(a) If s is a view, elm is the method invoked by the event

handler of s.
(b) If s is a component (i.e., activity, service, or receiver), elm

is an intent-filter object defined by s.
Pattern 1(a) is only applicable to UI events and their

handlers, and Pattern 1(b) is only applicable to system and
inter-app events and their handlers. Fig. 1(a) shows an example
of static registration pattern for UI events, where Button is a
view and click is the method invoked by the event handler
of Button. Fig. 2(a) presents an example for service event
registration, where service is a component and intent-filter is
its attribute.

Pattern 2 (Dynamic registration pattern): A dynamic reg-
istration pattern is defined as s.rm(h) in the app code, where
s is the source of an event, rm is the registration method of s,
and h is the event handler that s registers.

Pattern 2 applies to both UI and system events. In Fig. 1(b),
btn is a view, setOnClickListener is the registration method,
and listener is the event handler. In Fig. 2(b), sm is a service,
registerListener is the registration method, and l is the event
handler.

Pattern 3 (Callback overridden pattern): A callback over-
ridden pattern is defined as s.callback, where s is the source
of an event e, and callback corresponds to e’s event handler.
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Pattern 3 is only applicable to view events. For this
pattern, one should override the corresponding callbacks in
the app code. The following six callbacks are frequently
used in this pattern: onListItemClick(), performClick(), on-
Touchevent(), onKeyUp(), onKeyDown(), performLongClick().
Fig. 1(c) presents an example, where MyView is a view and
performClick is the overridden method.

1 // View + Callback

2 <Button android:id="." android:onClick="click">
(a)

1 btn . setOnClickListener ( listener ) ;
(b)

1 Class MyView extends View{
2 void performClick (){
3 }
4 }

(c)

Fig. 1. Examples of UI event registration

1 <service name="MusicService">
2 <intent− filter > ...</ intent− filter >
3 </service>

(a)

1 SensorManager sm = getSystemService();
2 l = new SensorEventListener (){
3 void onSensorChanged();}
4 sm. registerListener ( l ) ;

(b)

Fig. 2. Examples of service event registration

III. EHB TESTING

In this section, we propose the event handler-based testing
approach for Android apps.

A. Motivation and Challenges

Fig. 3 exhibits a code snippet from the OpenSudoku app,
which involves one UI event and one system event. For the
UI event, the corresponding UI element, event handler, and
callback are listView, FolderListActiviy, and onListItemClick(),
respectively. For the system event, the corresponding event
handler and callback are sm and onSensorChanged(). To test
this app with traditional UI-based approaches, these two events
must be triggered as the test inputs. However, generating these
two events is not easy, because triggering the UI event needs
to click the right list item on the screen, and triggering the
system event needs to simulate a sensor change. Moreover,
once being triggered, these two events have to be analyzed
by the underlying Android OS and then passed to their event
handlers through numerous layers of the Android framework,
which can slow down the testing.

To test this app, we directly invoke both of the two callbacks
onListItemClick() and onSensorChanged() in the app code (as
shown in the grey region), rather than trigger the correspond-
ing events from the UI hierarchy. In this way, not only the two

1.void ehbTest(){
2 //system event
3 SensorEvent se=sm.getSensorEvent();
4 sel.onSensorChanged(se);
5 //UI event
6 for(int i=0;i<lv.size();i++){
7 View v = lv.getChildAt(i);
8 long id= lv.getAdapter().getItemId(i);
9 this .onListItemClick(lv,v,i,id) ;
10 }
11 }

1 class FolderListActivity extends ListActivity {
2 void onCreate(Bundle bundle) {
3 //system event
4 SensorManager sm=getSystemService();
5 SensorEventListener sel=new SensorEventListener(){
6
7
8
9

void onSensorChanged(SensorEvent s);} 
sm.registerListener (sel) ;
//UI event
ListView lv=getListView();

10 }
11 //invoked when list item is clicked
12 void onListItemClick(ListView l,View v,int pos,long id){
14 Intent i=new Intent(this,SudokuListActivity.class);
15 i.putExtra(EXTRA_FOLDER_ID, id);
16 startActivity(i) ;
17 }}

Callback
invocations

Fig. 3. A motivating example from the OpenSudoku app

events can be simulated easily, but the testing itself can also
be performed more efficiently. Considering the large number
of events and the difficulty of event generation in many cases,
our approach is a promising alternative for app testing.

Challenges. However, there are several challenges in real-
izing the idea above:

1) We need to identify the event handlers (that is, the call-
back functions) and construct their invocations. Android
provides 58 different callbacks as a part of the framework,
and besides, there can be many user-defined or overridden
callbacks. It is challenging to correctly identify them and
construct their invocations.

2) We have to construct valid arguments for the callback
invocations. For example, the callback onListItemClick()
has four different types of parameters: listView, view,
position and id. It is uneasy to obtain valid values for
the parameters from the app.

3) We should insert these callbacks at proper locations in the
app and to control their invocations such that the app can
be systematically tested. It is challenging to insert these
invocations without breaking the lifecycle of activities
and to invoke them to effectively cover different activities.

B. Invoking Event Handlers

We first identify all event registration statements in the app
based on the three patterns presented in Section II. Algorithm 1
performs a linear scan of the app to find all events and their
handlers (declared either in the XML resource files or in the
app code). Then, for each event registration statement, we
construct an instrumented invocation statement (which will be
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Algorithm 1: Search for events and their handlers
Input: The APK file of an Android app
Output: E: XML elements matching with Pattern 1, S: Statements

matching with Pattern 2, M : Methods matching with Pattern 3
1 for each XML resource file f ∈ app do
2 for each XML element e ∈ f do
3 if e matches with Pattern 1 then
4 E ← E ∪ {e}

5 for each class c ∈ app do
6 for each m ∈ c do
7 if m matches with Pattern 3 then
8 M ← M ∪ {m}
9 for each statement s ∈ m do

10 if s matches with Pattern 2 then
11 S ← S ∪ {s}

inserted into the app), according to the invocation pattern of
event handlers defined below.

Pattern 4 (Invocation Pattern): The invocation pattern for
event handlers used for the instrumentation is defined as
h.callback(s), where s is the event source, h the registered
event handler, and callback() the callback method of h.

To construct the callback invocation, we need to identify the
three elements s, h, and callback for each event registration
pattern. For Pattern 1(a) and Pattern 3, view s is the event
source, elm is the callback, and the object that defines elm is
the event handler h. For Pattern 1(b), component s is the event
source and elm is the intent-filter. In this case, the life-cycle
method of s is the callback, and the class that defines this
method is the corresponding event handler. For this pattern,
besides s, the intent-filter elm is also the parameter of the
callback. For Pattern 2, we can obtain the callback from
the event handler registered by the registration method rm.
Figs. 4a-4c present the instrumented invocation statements for
the UI event registration examples in Figs. 1a-1c, respectively.
Fig. 4d shows the instrumented invocation statements for the
service event registration examples in Fig. 2.

1 // m is click method

2 Object c = m.getClass () .newInstance() ;
3 c. click (btn) ;

(a)

1 listener .onClick(btn) ;
(b)

1 MyView.newInstance().performClick() ;
(c)

1 Activity mainActivity ;
2 Receiver ma = BootReceiver.newInstance() ;
3 Intent intent = createIntent ( intentfilter ) ;
4 ma.onReceiver(mainActivity , intent ) ;

(d)

Fig. 4. Examples of invocation patterns for instrumentation

C. Constructing Callback Arguments

For all the 58 callbacks provided in the Android API, we
have successfully instrumented their invocations in apps. In

this subsection, we describe how to construct valid arguments
for these callback invocations.

One way to construct the callback arguments is to collect the
runtime data for a few test runs (e.g., with existing test cases)
and use the collected data as the arguments. Nevertheless, this
method requires the existence of good test inputs. After analyz-
ing the 58 callbacks, we propose a simple yet effective method
to construct valid arguments based on the default values and
from the app context. This method is complementary to the
first method, and it does not require extra test runs.

• Using default values. Data types in Java can be divided
into primitive types and reference types. For primitive
data types, Android API usually provides default valid
values. For this kind of parameters, we use their default
values as arguments for the corresponding callback in-
vocations. If a callback involves several parameters, we
enumerate all combinations of their default values.

• Deriving from app context. For parameters of the
reference data types, the valid values (objects) can be
obtained from the app context. These parameters are
usually connected with the event source, and thus can be
obtained by invoking relevant APIs of the event source.
For arguments that cannot be directly obtained from the
app context, we can get them through Java reflection.
For instance, to construct the arguments for the onDrag()
callback, we cannot get a DragEvent instance via new
DragEvent() directly because only a private construction
method is provided. Instead, we utilize Java reflection to
get the private constructor, set its accessibility to true, and
finally get an instance via invoking class.newInstance().

Example. The grey region in Fig. 3 illustrates how we
construct the callback arguments for the motivating example.
Take the callback onListItemClick(ListView lv, View v, int pos,
long id) as an example. Its first argument is a ListView instance
which can be obtained from the app context. The second is
the view that is clicked within the ListView. The third is the
position of the view in the ListView. The last is the row id
of the view. The last three parameters are all correlated with
the first parameter lv, and thus can be constructed from it.
Lines 6-8 show how to obtain the second, third and fourth
arguments. Line 9 is the instrumented callback invocation. The
reason why we do not use default values for the parameters
of primitive types is to enumerate all possible values. Note
that our approach can automatically construct such arguments
from the correlated objects using Android APIs.

D. Exploration Strategy

The logic of an app can often be described as a state
machine (or a directed graph) where nodes represent activ-
ities and edges the activity transitions caused by events (cf.
Definition 1). Fig. 5 depicts a part of the state machine of the
OpenSudoku app. Note that the state machine is just to help
readers understand our approach; it is unnecessary to explicitly
construct it in our approach.

Definition 1 (App abstraction): An app can be abstracted
as a state machine (A, E , →) where
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Soduku
List

Sudoku

Play

File
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Folder
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Sudoku
Edit

Game
Settings

e1

e6 e7

e4

e5

Sudoku
Export

e2

e3

e8

e0

Fig. 5. Part of the state machine of the OpenSudoku app.

• A is an activity set; A0∈A is the main activity, and Ai∈A
is called the current activity if it is active on the screen
of the user device.

• E is the set of all possible events in the app, and E(Ai)
⊂ E is the set of events that can be triggered in Ai.

• → ⊂ A × E × A is a ternary transition relation.
Without loss of generality, our testing focuses on event

coverage, i.e., aiming to cover all events in an app. To this
end, all nodes (activities) where events can be triggered should
be visited. Android provides an activity stack managing all
activities, which allows us to use a depth-first-search strategy
for activity (event) traversal.

Beginning from the main activity A0, we first identify the
event handlers (callbacks) of events in E(A0). Then, we invoke
all these callbacks in a random but valid order CS. That
is, each callback can only be invoked if the corresponding
event is valid at the current state of A0; if there is more
than one valid event, the invocation order of these callbacks is
random. Notably, the invocation of some event handlers in CS
may cause the transitions from A0 to other activities. These
activities are automatically pushed into the Android activity
stack. After all event handlers in A0 are invoked, the activity
Ai at the top of the stack is popped. The same strategy is
used to explore all event handlers in Ai. The above procedure
iterates until all activities of the app are explored.

To ensure that our instrumentation is valid, the callbacks
should be invoked in a similar way as the user’s click on
the UI elements. With this in mind, for each activity, we
build a specific menu-item “test” with its event handler en-
capsulating a valid callback sequence of events in E(Ai).
In the following example, the menu-item “test” registers a
listener onMenuItemClickListener whose callback is onMenu-
ItemClick(). In the callback, the invocations of event handlers
are instrumented.

1 MenuItem menuItem = new MenuItem("test");
2 OnMenuItemClickListener oml;
3 oml = new OnMenuItemClickListener({
4 void onMenuItemClick(){
5 // inserting invoking statements
6 }};
7 menuItem.setOnClickListener(oml);

Algorithm 2 presents our test exploration strategy, which
accepts the instrumented APK file as input. In the algorithm,

Algorithm 2: EHBDroid Test exploration
Input: The instrumented APK file of an Android app

1 S ← S.push(MainActivity)
2 while S is non-empty do
3 currentActivity ← S.pop()
4 if currentActivity /∈ L then
5 L = L ∪ {currentActivity} trigger new event “test”
6 for each activity Ai generated by “test” do
7 S.push(Ai)

8 else
9 click navigation “Back”

besides the Android activity stack, a list L is utilized to denote
the activities that have been explored. Algorithm 2 works as
follows: If currentActivity has not been explored, all event
handlers in currentActivity are triggered (by clicking “test”)
and the generated activities are all pushed into S. Otherwise,
the testing continues to explore next activity on the top of the
stack (by pressing “back”). The algorithm terminates when
the activity stack S becomes empty. Since each activity is
explored only once, time complexity of Algorithm 2 is linear
in the number of activities.

Example. Consider the example in Fig. 5 where
SodukuList is the main activity. When the instrumented
“test” menu-item in SodukuList is “clicked”, event han-
dlers of the five events e0∼e4 in SodukuList are triggered
and the generated activities are pushed into the stack S
following a random order, e.g., SodukuEdit, SodukuP lay,
SodukuP lay, FolderList, and SodukuEdit. Although there
are repeated activities in S, their exploration is not redundant
according to Algorithm 2. Next, SodukuEdit is explored as it
is at the top of S. The other activities are all explored similarly.

IV. IMPLEMENTATION

We have implemented EHBDroid as a fully automated tool
based on Soot [16]. Fig. 6 depicts its architecture which
consists of two main parts: an Instrumentor that instruments
the target app, and a testing Explorer that tests the app.
Important modules of the two parts are explained below.

XML Parser and Recognizer. The first step of EHBDroid
is to search different event registration patterns in both the
XML resource files and the app code. The XML Parser utilizes
XMLPrinter [20] to parse the input XML resource files. Based
on Pattern 1, it searches for two kinds of tuples. The first
kind consists of a view and a method, while the second kind
consists of a component and one or more intent-filters. All
these tuples are stored in a map. The Recognizer then searches
for all statements that match with Pattern 2 and Pattern 3. All
qualified statements are summarized in a set of Java objects.
In each of the Java objects, there are three different fields:
event source, registered methods, event handlers.

Dispatcher. The Dispatcher determines the activities that
contain the event sources identified by the XML Parser and the
Recognizer. It constructs in each activity a “test” menu-item
that manages the invocation statements for the corresponding
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Fig. 6. Architecture of EHBDroid.

callbacks. The target activity of the invocation statement is
determined as follows. If the event source is a view, the
target activity is obtained by view.getContext(). If the event
source is a component (i,e., activity, service, receiver), the
corresponding event can be triggered in any activity. Without
loss of generality, in this case, the main activity is considered
as the target activity.

Invocation Builder. This module constructs the invocation
statements according to Pattern 4. The arguments of callbacks
are constructed according to the two means presented in
Section III-C. For inter-app events, since the corresponding
activities are started by third-party apps, we simulate these
apps by directly instrumenting the statements that start new ac-
tivities (like startActivity(intentFromIntentFilter)) in the main
activity of the app to be tested.

Invocation Manager. An Invocation Manager corresponds
to our instrumented event “test”, and is realized by a “test”
menu-item in each activity. A valid sequence of callback
invocations in an activity is gathered in the event handler of
“test”. Once the “test” menu-item is clicked, all instrumented
statements in the activity will be triggered.

Explorer. By maintaining a list of visited activities, the
Explorer can determine whether the current activity has been
explored. If an activity has not been explored, the Explorer
will automatically click the “test” menu-item in the activity
to explore it. Otherwise, the Explorer clicks “back”, and the
another activity on the top of the Android activity stack
becomes the current activity. The above step iterates until the
activity stack becomes empty. We leverage MonkeyRunner in
the Android automated testing framework to send the device
two UI events: click “test” and press “back”. The current
activity is obtained by the command: adb shell dumpsys
activity of Android Debugging Bridge [21].

After introducing the implementation of EHBDroid, we dis-
cuss how it handles crashes and how it is used for debugging.

Handling crashes. In Android, when an uncaught exception
occurs, the app will crash and terminate. To ensure that the
testing continues until all event handlers are explored, we
instrument every invocation statement in a try-catch block.
Thus, when an exception (bug) is found, we can record the
exception information and go on testing.

Enhancing debugging. EHBDroid also allows to piggy-
back the instrumentation to generate execution logs (Logger
is in charge of this.). The log records the runtime state of each
event (e.g., activity, event source, event handler, and callback),
which is useful for debugging. For example, when a failure

occurs, the recorded events can be used by Robotium [22]
or other UI-based tools to reproduce the failure. Moreover,
the corresponding bug can be easily located by inspecting the
failing event handler.

V. EVALUATION

We have evaluated EHBDroid on a collection of 35 real-
world Android apps from F-droid and Google Play, and com-
pared it with two popular UI-based app testing approaches:
Monkey and Dynodroid, both of which have proven fault
detection ability [14]. Through the experimental evaluation,
we aim at answering the following three research questions:

• RQ1 - Code coverage: Can EHBDroid achieve a higher
code coverage than the other two approaches?

• RQ2 - Testing efficiency: How efficient is EHBDroid in
terms of event handlers triggered per minute?

• RQ3 - Fault detection ability: Compared with the other
two approaches, can EHBDroid find more bugs?

Benchmarks. Table II lists the apps used in our evaluation.
These apps are randomly chosen from F-droid and Google
Play with no prior knowledge about their event handlers. The
first 25 (from F-droid) are popular benchmarks with a wide
variety of functionalities, with 21K lines of code (Jimple),
2,000 methods, and 9 activities on average for each app. The
other 10 apps (from Google Play) are all large and complex
apps among the top 1,000 in the Android market, with 96K
lines of code, 6.7K methods, and 18 activities on average.

Experimental setup. The Monkey [19] tool is a part of
the Android SDK and is widely used by developers. It regards
the app under test as a black-box and randomly generates UI
(touch(x,y)) events. Since the number of generated events in
Monkey can be configured by users, in our experiment, we set
a sufficiently high bound (1M events) to ensure that Monkey
does not stop too early, in order to make a fair comparison.
Dynodroid [1] enhances Monkey by reducing the possibility
of redundant event generation. We employ the default setting
(BiasedRandom strategy) of Dynodroid in our experiment.

All experiments were performed on a PC with a 4GB
memory and 2.4GHz processor, running Linux and Android
4.4. All experimental data were averaged over three runs.

A. Code Coverage

We use statement coverage as the criterion to compare the
testing effectiveness of different approaches. Because existing
tools for calculating statement coverage such as JaCoCo [23]
and Emma [24] require Java source code, they cannot be
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TABLE II
BENCHMARKS USED IN OUR EXPERIMENTS

App name LOC #Class #Method #Act
AGrep 2,106 39 129 6
AndroidomaticK 1,859 26 111 4
audiobook 54,752 892 3,648 7
browser 9,592 128 681 5
dalvikexplorer 2,081 43 212 16
kolen 1,803 25 95 4
vector 77,994 890 4,551 21
atomic 1,078 157 1,9137 10
podax 20,130 222 1,097 4
Nectroid 5,185 88 516 6
Notepad 549 10 32 4
OpenSudoku 7,624 104 561 10
ringdroid 7,860 64 332 3
Sanity 13,046 204 1,048 28
TippyTipper 2,998 47 238 5
VirtualDataLine 2,489 41 256 4
Vudroid 2,762 47 270 3
dashclock 3,059 15 129 7
pedometer 2,502 28 173 2
Apollo 19,446 156 1,391 9
SipUA 41,127 284 2,488 12
Anima 4,840 86 404 8
Editor 8,864 121 832 5
QKSMS 119,005 1,100 6,279 9
K9 127,012 931 6,532 28
Average 2,1591 230 2,046 9
TinyFlashLightED 75,459 756 4,666 6
AdobeReader 61,734 709 5,445 15
fightpic 59,210 679 7,689 9
ColorNote 57,825 748 3,249 20
podcast 165,850 2,210 12,205 17
AdobeAir 194,275 1,841 12,371 15
WordPress 11,2941 1,270 7,594 54
pokegowallpaper 22,131 239 1,482 9
BeautyPlus 167,516 1,493 9,293 24
WikiPedia 48,711 406 3,239 12
Average 96,565 1,035 6,723 18

used in our scenario where only the APK file is available. We
hence implement a new tool called Asc (Android statement
coverage) for calculating the statement coverage for APK files.
Asc first uses static analysis to extract the length of each basic
block of each method. Then, it instruments a statement at the
end of each block to print the length of the executed block.
The total lines and visited lines of statements can be calculated
by L =

n∑
i=1

li and Lv =
n∑

i=1

bi×li, respectively, where n is the

number of blocks in the app, li the length of a block, and bi
(= 1 or 0) indicates whether the block is executed.

Overall results. We test each benchmark with the three
tools and collect the coverage statistics for both the first 10
minutes and the end of an hour. Table III reports the results.
For all the benchmarks, EHBDroid was able to finish testing
(i.e., no more activities to explore) in 10 minutes, and for
most benchmarks (20/25 in F-droid and 10/10 in Google Play),
EHBDroid achieved a much higher coverage than the other
two tools in 10 minutes. For the 25 F-droid benchmarks, on
average, the coverage of EHBDroid is 7.6% and 9.39% higher

than Monkey and Dynodroid, respectively. For the 10 Google
Play apps, the difference is even larger. EHBDroid achieves
as much as 26% more coverage than Monkey(on ColorNote)
and 15.1% on average. Dynodroid failed to run on all of these
apps, because it requires instrumenting the Manifest file before
testing, which throws exceptions in these large apps.

Given more testing time, both Monkey and Dynodroid
were able to increase coverage for many apps. However, after
one hour, their achieved statement coverage is still smaller
than that by EHBDroid. For apps from F-droid, the average
coverage by Monkey and Dynodroid is close to (1%-2%
smaller than) EHBDroid. Nevertheless, for those from Google-
Play, the difference is still significant. Compared to Monkey,
EHBDroid achieved as much as 22.3% higher statement
coverage and 11.1% higher on average in an hour.

Result analysis. Our empirical results suggest that EHB-
Droid is more effective and efficient than the other two UI-
based testing approaches. This confirms the advantage of
EHBDroid over Monkey and Dynodroid by directly trigger-
ing event handlers of UI, system, and inter-app events, whereas
Monkey and Dynodroid can only trigger a part of UI events
and some system events (Monkey cannot). For instance, the
OpenSudoku app contains a few context-menu events which
require two steps to trigger: long pressing and clicking on the
pop-up menu item. Monkey and Dynodroid hardly trigger
these events, as they do not consider long-press events, let
alone their combinations with a successive click.

We also found that it is difficult for Monkey and Dynodroid
to generate events associated with navigation drawers, list
items, preferences, etc. For instance, the app ColorNote has
a navigation drawer containing a few items that drive users
to different activities. Usually, these items are invisible until
the navigation view is clicked. However, when one of these
items is clicked, other items are invisible again. Hence, given
a limited time, Monkey and Dynodroid can only trigger a few
items but not all of them. In contrast, EHBDroid guarantees to
trigger callbacks for all items, because those events correspond
to the same callback and their event handlers can be invoked
easily by EHBDroid with different parameters.

Another reason why EHBDroid achieves a higher statement
coverage than the other two tools is that when most events in
an activity do not cause activity jump, the UI-based approaches
often fall into a loop, which is hard to jump out. The loop
consumes time but does not explore more app behavior. For
example, in an activity of the podcast app (also ColorNote),
there are many enabled events that do not cause activity jump;
Monkey stayed in this activity for a long time until the sole
event that can cause activity jump was triggered.

For a few apps such as AGrep and kolen, the statement
coverage of EHBDroid is lower than that of Monkey or
Dynodroid. The reasons are two-fold. First, EHBDroid cur-
rently does not support text input [25]. In AGrep, a “submit”
button is unavailable when the edit texts for userID and
password are empty. Hence, EHBDroid cannot reach the suc-
cessor activities. Second, for performance reason, EHBDroid
currently does not handle all items in a list, because such
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TABLE III
EXPERIMENTAL RESULTS - RQ1: CODE COVERAGE AND RQ2: TESTING EFFICIENCY

App name Statement coverage(10min)(%) Statement coverage(1h)(%) #Events per minute
Monkey Dynodroid EHB Monkey Dynodroid EHB Monkey Dynodroid EHB

AGrep 74.28 70.23 69.34 74.28 70.23 69.34 1,500 12 18
AndroidomaticK 66.39 55.98 79.80 83.11 88.78 79.80 1,818 12 28
audiobook 24.03 32.94 35.02 35.09 41.67 35.02 1,340 12 21
browser 58.89 57.49 59.38 59.38 57.49 59.38 1,412 12 36
dalvikexplorer 50.25 29.21 56.14 57.02 40.56 56.14 1,500 12 24
kolen 72.89 67.86 67.86 72.89 67.86 67.86 1101 12 44
vector 36.89 37.90 47.44 48.61 45.79 47.44 2,143 12 20
atomic 54.67 58.89 66.47 66.47 66.47 66.47 1,500 12 26
podax 59.27 65.66 46.77 67.99 65.66 46.77 1,519 12 25
Nectroid 55.27 65.89 76.63 76.63 85.72 81.63 1,519 12 25
Notepad 69.88 66.37 82.37 72.88 73.00 82.37 1,463 12 15
OpenSudoku 60.03 40.63 71.97 71.97 64.57 71.97 1,846 12 35
ringdroid 55.65 43.19 73.49 78.35 73.97 73.49 1,579 12 22
Sanity 50.18 50.18 50.18 50.18 50.18 50.18 1,000 12 29
TippyTipper 42.86 41.41 78.29 60.57 53.78 78.29 1,714 12 78
VirtualDataLine 32.39 53.08 36.33 42.15 53.08 36.33 1,538 12 25
Vudroid 64.01 58.10 72.41 72.41 68.35 77.41 952 12 30
dashclock 82.18 82.18 82.18 82.18 82.18 82.18 1,538 12 42
pedometer 88.45 73.89 88.45 88.45 84.23 88.45 1,846 12 38
Apollo 56.73 55.76 70.46 56.73 55.76 70.46 2,297 12 29
SipUA 18.74 22.35 17.98 18.74 22.35 17.98 1,846 12 31
Anima 66.08 69.28 74.26 66.08 75.50 74.26 469 12 32
Editor 54.44 62.02 63.22 65.57 62.02 63.22 543 12 32
QKSMS 38.98 32.57 39.51 39.51 32.57 39.51 403 12 26
K9 43.66 40.18 62.88 51.91 54.56 62.88 3,333 12 41
Mean 55.08 53.36 62.75 62.37 61.45 62.75 1,488 12 31
animeradio 28.67 - 47 32.75 - 47 2,595 - 40
AdobeReader 27.88 - 46.78 29.36 - 46.78 3,141 - 27
fightpic 33.56 - 49.99 35.83 - 49.99 3,750 - 23
ColorNote 24.57 - 50.21 27.88 - 50.21 3,380 - 18
podcast 27.04 - 38.92 34.39 - 38.91 3,692 - 35
AdobeAir 14.84 - 20.09 15.43 - 20.09 2,390 - 23
WordPress 26.57 - 35.47 36.67 - 35.47 2,521 - 31
pokegowallpaper 36.06 - 48.97 41.27 - 48.97 2,312 - 55
BeautyPlus 27.89 - 45.97 32.98 - 45.97 3,774 - 19
WikiPedia 32.63 - 47.24 32.63 - 47.24 3,015 - 46
Mean 27.97 - 43.06 31.92 - 43.06 3,057 - 32

item events often trigger the same behavior. We set a fixed
number (e.g., 10) to limit the invocation times of the callback
onItemClicked(), with the assumption that most of the items
are handled in the same way. Thus, if a ListItem contains more
than 10 items each of which is handled differently, some app
behavior may be missed.

Low code coverage. For most apps, the achieved statement
coverage by all the three tools is low (less than 50%). There are
several reasons. First, in many apps there exists a large portion
of code that is not relevant to the business logic of the app.
Such code can only be reached under specific scenarios such
as bug reporting, version updating, exception handling, etc.
Second, some apps have dead code that can never be explored.
For example, SipUA contains a large number of branches and
methods that can never be reached. Third, some activities fail
to be explored due to the missing of certain events for activity
jumping. When such an event is missed, the target activity and
its successor activities may not be explored. Fourth, certain
code requires special permissions and is not accessible to

ordinary users. For example, commercial apps usually provide
both a free version and a paid version. The paid functionalities
can only be explored via a paid account.

B. Testing Efficiency

The last three columns in Table III report the number of
events (for Monkey and Dynodroid) or event handlers (for
EHBDroid) generated per minute by the three tools. We use
this metric to further show the testing efficiency of the three
approaches. Monkey is the fastest approach among the three. It
generates 1.5K events and 3K events per minute for the F-droid
and Google Play apps, respectively. However, these events
contain a large number of redundant (i.e., repeated) or invalid
events that are not useful in exploring new app behavior.
Dynodroidcollects events and sends them to the app at a fixed
frequency (once every 5s) via the Android Debug Bridge.
Accordingly, the number of events generated per minute by
Dynodroid is a constant 12. Among these events, there may
also exist redundant or invalid events. In contrast, each event
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TABLE IV
EXPERIMENTAL RESULTS - RQ3: FAULT DETECTION ABILITY

App name Monkey Dynodroid EHBDroid
AGrep 1 1* 1

Notepad 1
OpenSudoku 1 1 2

ringdroid 1 1 1
Sanity 1* 1* 1

padometer 1 1* 1
Apollo 1* 1* 1

K9 1 1 2
ColorNote 1

AdobeReader 1
Total 7* 7* 12

handler invocation by EHBDroid is unique and non-redundant.
Moreover, the speed of EHBDroid is more than twice as
that of Dynodroid, generating 32 events per minute. Since
in our experiment the average time to instrument one app
is one minute, EHBDroid is still more efficient even if the
instrumentation time is included.

Another reason why EHBDroid is more efficient than
Monkey and Dynodroid lies in the fact that with one click
on “test”, all event handlers in the current activity are invoked
together by EHBDroid, which avoids the latency caused by
GUI and the cost of message passing in the system. In
particular, if an activity contains many events that cause
activity jumping, the testing time can be improved significantly
by Dynodroid, because activity jumping is expensive and the
UI-based approaches must jump back and forth repeatedly to
trigger all events in that activity. For example, TippyTipper is
a rate calculator containing 20 buttons. To test all the buttons,
Dynodroid needs 20×5 = 100s, while EHBDroid takes only
2s to invoke the callbacks 20 times.

C. Fault Detection Ability

Table IV summarizes all bugs found by the three tools in our
experiments, where ∗ represents bugs found after an hour. In
ten minutes, EHBDroid found a total of 12 bugs (manifested
as crashes or runtime exceptions) in these 35 apps, whereas
Monkey and Dynodroid only found five and four, respectively.
After running for an hour, Monkey and Dynodroid found
two and three more bugs, respectively. Overall, EHBDroid
found five new bugs that could not be found by Monkey
and Dynodroid, and all bugs that found by Monkey and
Dynodroid were also found by EHBDroid. These 12 bugs fall
into three classes: UI bugs, inter-app bugs, and special bugs.
We have also manually inspected these bugs and confirmed
their validity. We next describe them in detail.

Eight UI bugs. These bugs were found in apps AGrep,
OpenSudoku, ringdroid, Sanity, padometer, Apollo, K9, and
ColorNote by EHBDroid. Except ColorNote, the other seven
were also found by Monkey and Dynodroid. When the corre-
sponding events are triggered, these apps crash. For example,
in the K9 Mail client, when an option button in the Setting
activity is clicked, the app terminates abnormally. The error

is due to the fact that in the corresponding event handler, K9
uses an implicit intent to start a new activity, but neither the
app nor the device can handle the intent. The UI bug of the
app ColorNote was found in activity PreferenceActivity by
EHBDroid. The other two tools failed to find this bug because
they did not reach activity PreferenceActivity.

Three inter-app bugs. These bugs are found in apps
NotePad, OpenSudoku, and K9 by EHBDroid. These bugs
are caused by the mismatches between some intent-filters
and the received intents. The code below shows such a bug
detected in K9. The activity MessageList defines an intent-
filter in the Manifest file to filter the incoming intents. Mes-
sageList employs the method decodeExtra to resolve intents,
requiring that the attribute action of the intent should be
“android.view.action.View” (Line 2) and the attribute data of
the intent should contain a non-null path (Line 5). If data
does not contain a path attribute, when Line 5 is executed,
an exception is thrown and the app crashes. Monkey and
Dynodroid failed to find this kind of bugs, because they do
not consider inter-app events.

1 class MessageList extends Activity {
2 boolean decodeExtras( Intent intent ){
3 if (("android.intent.action.VIEW".equals(action))
4 &&(intent.getData () !=null ) ){
5 List localList = intent .getData () .getPathSegments() ;
6 String path = ( String ) localList . get (0) ;
7 }
8 }}
9 <activity name="MessageList">

10 <intent− filter >
11 <action name="android.intent.action.VIEW"/>
12 <data host="messages" scheme="email"/>
13 <category name="android.intent.category.DEFAULT"/>
14 </ intent− filter >
15 </ activity >

One special “bug”. This bug was found in AdobeReader
by EHBDroid. It is special because it is in an event handler
of a view that is invisible from the screen. Thus, from
the perspective of end users, it is not a bug, but from the
perspective of programmers, it is. The code below illustrates
the bug. Note that Automationt.class is not declared in the
Manifest file. Hence, the app violates the rule that an activity
is valid only if it is declared in the Manifest file. When the non-
visible menu item 2131231108 is triggered, the app crashes.
Neither Monkey nor Dynodroid can find this bug, whereas
EHBDroid can because it can obtain all the menu items via
menu.getMenuItems() and directly trigger the events through
onOptionsItemSelected(item).

1 boolean onOptionsItemSelected(MenuItem item){
2 swtich(item. getId () )
3 case 2131231108:
4 Intent i=new Intent( this , Automationt. class )
5 startActivity ( i ) ;
6 }

VI. LIMITATIONS

Except the 58 callbacks provided by Android, currently
EHBDroid does not specially consider user-defined callbacks.
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Fortunately, we find that many user-defined callback functions
are invoked by the callbacks in Android, and thus these user-
defined callback functions can also be explored by EHBDroid.
Nevertheless, since an event handler may be called in a
partial invocation context that differs from the real scenario,
EHBDroid may yield false alarms (false positives) that are
never triggered by end users, though some of the false alarms
are still helpful for programmers.

Since the mechanism of EHBDroid is parallel to the event
generation, it is orthogonal to the coverage criteria and ex-
ploration strategy. Currently, EHBDroid is at an early stage.
Although a depth-first-search strategy is used for activity
exploration, the event handlers belonging to an activity are
invoked in a random (though valid) order and only event
coverage is considered. Thereby, EHBDroid is not compared
with the model-based and more advanced app testing tools
that are based on event (event sequence) generation, such as
GUIRipper [6], SwiftHand [9], Sapienz [11], etc.

EHBDroid relies on Soot for app instrumentation. How-
ever, Soot fails to instrument certain large apps with more
than two DEX files. Besides, some apps prevent from being
instrumented by hiding DEX files, checking signatures, etc.
Thus, EHBDroid may fail to instrument such apps.

VII. RELATED WORK

For Android app testing, a large body of work focuses on
test input generation, i.e., event generation. According to their
exploration strategies, existing approaches fall into three cat-
egories: random testing (or fuzzing), which generates random
events to apps; model-based testing, which generates events
according to certain models (such as finite state machines)
of apps; and advanced testing, which uses more sophisticated
techniques such as symbolic execution to generate events.

Compared to existing work, EHBDroid is distinguished by
not generating events but directly invoking callbacks of the
relevant event handlers, which is more efficient and effective.
Considering the correlation between events and event handlers,
our testing approach applies to general event-driven systems.

Random testing. Besides Monkey and Dynodroid, most
early work focuses on random testing [6], [26]–[31]. Amal-
fitano et al. [6], [27] present a crawling-based approach to
generate random but unique test inputs. There exist many
tools for generating inter-app events by random generation
of intent values [1], [19], [28]–[31]. Null intent fuzzer [28]
concentrates on revealing crashes of activities that fail to
properly check input intents. Intent Fuzzer [29] focuses on
generating invalid test events with the goal of testing the
robustness of apps. The primary limitation of random testing
is that it often generates redundant events that are not useful
for exploring new app behavior.

Model-based testing. This line of research often requires
a GUI model of the application and has been intensively
studied in GUI testing [6]–[10], [32]. The GUI model can
be obtained manually [33] or via static/dynamic analysis [8].
Hierarchy Viewer [34] is a tool for generating GUI models
for Android apps. Based on the GUI model, events can be

generated to systematically explore the behavior of the app.
For instance, GUIRipper [6] dynamically constructs an event
flow graph for an Android app and follows a depth-first
exploration strategy to test the app. ORBIT [7] adopts the
same exploration strategy, but it is a white-box approach that
utilizes the source code of the app to determine the events
that can be triggered in each activity. Similar approaches and
tools can be found in [8], [9], [35]. However, the effectiveness
of these approaches heavily relies on the quality of the GUI
model. In practice, the models are often very abstract and may
not capture the complete behavior of the apps.

Advanced testing. Jensen et al. use symbolic testing to gen-
erate event sequences that reach specified target locations [33].
ACTEve [4] utilizes concolic execution to track events from
their generation to their processing. These approaches in-
strument both the Android framework and the app, and can
generate more complex event sequences that the other tools
cannot. However, the scalability of symbolic testing is often
limited. Similar approaches can be found in [8], [36]–[38].

By analyzing the interactions between widgets, Trim-
Droid [2] employs the constraint solver to generate a subset
of event sequences, which can achieve a comparable cover-
age as the exhaustive combinatorial testing. EvoDroid [37]
employs evolutionary algorithms to generate complex event
sequences. Sapienz [11] uses search-based testing to auto-
matically explore test sequences to minimize the length of
event sequences, and simultaneously maximize code coverage
and fault revelation. The tool AppDoctor [39] also triggers
event handlers to simulate events. However, it only considers
20 types of events and merely focuses on specific bugs that
cause apps to crash. In addition, it uses Java reflection to
trigger event handlers, which is not so efficient. In contrast to
AppDoctor, EHBDroid directly invokes event handlers based
on instrumentation, which is more general and more efficient.

VIII. CONCLUSIONS

We have presented a new approach called EHBDroid for
testing event-driven systems and specifically discussed its
concretization for testing Android apps. The key advantage of
EHBDroid is that by directly invoking the event handlers, it
avoids the difficulty of generating complex events that are hard
to trigger by traditional UI-based approaches, and it avoids
the latency induced by the GUI and the cost of message
passing in the system. We have presented an open source
tool and evaluated its performance on a collection of 35 real-
world Android apps. Experimental results demonstrate that
EHBDroid can quickly reach higher statement coverage than
the state-of-the-art UI-based testing approaches, and it is more
powerful than the other approaches for finding bugs.
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