I. INTRODUCTION

This document provides supplementary materials for the results presented in [1], which were not included in the manuscript due to space considerations. This document is available online at www.escience.cn/people/dshi/miscellaneous.html. The notations used below are consistent with those used in [1].

II. EVENT-BASED APPROXIMATE MMSE ESTIMATOR FOR THE DETERMINISTIC EVENT-TRIGGERING CONDITIONS

A. The deterministic innovation triggering condition

The recursive equations of the approximate MMSE estimator for multi-sensor systems are shown by Theorem 7 in [2]. For the single-sensor scenario, the recursive equations for the deterministic innovation triggering schedule can be simplified as

\[\hat{x}_k^- = A\hat{x}_{k-1} + Bu_{k-1}, \quad (S.1) \]
\[P_k^- = AP_{k-1}A^T + Q, \quad (S.2) \]
\[\hat{x}_k = \hat{x}_k^- + \gamma_k K_k (y_k - \hat{y}_k^-) + (1 - \gamma_k) K_k \hat{z}_k, \]
\[K_k = P_k^- C^T (CP_k^- C^T + R)^{-1}, \]
\[P_k = (I - \vartheta_k K_k C)P_k^- \quad (S.3) \]

where \(\hat{z}_k \) and \(\vartheta_k \) are defined by

\[
\hat{z}_k = \left(\phi \left(\frac{-\delta}{Q_{\hat{z}_k^2}} \right) - \phi \left(\frac{\delta}{Q_{\hat{z}_k^2}} \right) \right) Q_{\hat{z}_k}^{1/2} = 0, \quad (S.4)
\]

*Please contact Dawei Shi (dawei.shi@outlook.com) for correspondence of this document.

W. Chen, D. Shi and J. Wang are with the State Key Laboratory of Intelligent Control and Decision of Complex Systems, School of Automation, Beijing Institute of Technology, Beijing, 100081, P.R. China.

L. Shi is with the Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
\[\theta_k = \left[\phi \left(\frac{-\delta}{Q^{1/2}_{1k}} \right) - \phi \left(\frac{\delta}{Q^{1/2}_{1k}} \right) \right]^2 - \frac{-\delta}{Q^{1/2}_{1k}} \phi \left(\frac{-\delta}{Q^{1/2}_{1k}} \right) - \frac{\delta}{Q^{1/2}_{1k}} \phi \left(\frac{\delta}{Q^{1/2}_{1k}} \right) = \frac{-\delta}{Q^{1/2}_{1k}} \phi \left(\frac{-\delta}{Q^{1/2}_{1k}} \right) - \frac{\delta}{Q^{1/2}_{1k}} \phi \left(\frac{\delta}{Q^{1/2}_{1k}} \right). \] (S.5)

where \(\phi(z) := \frac{1}{\sqrt{2\pi}} \exp(-\frac{1}{2} z^2) \), \(Q_{zk} := CP_k^T C + R \) and \(Q(\cdot) \) denotes the standard Q-function [3].

B. The deterministic “send-on-delta” condition

For the deterministic “send-on-delta” schedule, the recursive equations of the corresponding estimator are the same with those of the estimator based on the deterministic innovation triggering schedule other than the definitions of \(\dot{z}_k \) and \(\theta_k \), which are defined by

\[\dot{z}_k = \frac{\phi \left(\frac{y_{rk} - \hat{y}_k - \delta}{Q^{1/2}_{1k}} \right) - \phi \left(\frac{y_{rk} - \hat{y}_k + \delta}{Q^{1/2}_{1k}} \right)}{Q \left(\frac{-\delta}{Q^{1/2}_{1k}} \right) - Q \left(\frac{\delta}{Q^{1/2}_{1k}} \right)} Q^{1/2}_{zk}, \] (S.6)

\[\theta_k = \left[\phi \left(\frac{y_{rk} - \hat{y}_k - \delta}{Q^{1/2}_{1k}} \right) - \phi \left(\frac{y_{rk} - \hat{y}_k + \delta}{Q^{1/2}_{1k}} \right) \right]^2 - \frac{\phi \left(\frac{y_{rk} - \hat{y}_k - \delta}{Q^{1/2}_{1k}} \right)}{Q \left(\frac{-\delta}{Q^{1/2}_{1k}} \right) - Q \left(\frac{\delta}{Q^{1/2}_{1k}} \right)} \phi \left(\frac{y_{rk} - \hat{y}_k + \delta}{Q^{1/2}_{1k}} \right) \frac{-\delta}{Q^{1/2}_{1k}} \phi \left(\frac{y_{rk} - \hat{y}_k - \delta}{Q^{1/2}_{1k}} \right) - \frac{\delta}{Q^{1/2}_{1k}} \phi \left(\frac{y_{rk} - \hat{y}_k + \delta}{Q^{1/2}_{1k}} \right) = \frac{\phi \left(\frac{y_{rk} - \hat{y}_k - \delta}{Q^{1/2}_{1k}} \right)}{Q \left(\frac{-\delta}{Q^{1/2}_{1k}} \right) - Q \left(\frac{\delta}{Q^{1/2}_{1k}} \right)} \phi \left(\frac{y_{rk} - \hat{y}_k + \delta}{Q^{1/2}_{1k}} \right). \] (S.7)

III. MMSE estimator for the stochastic send-on-delta event-triggerring condition

In [1], an event-triggering strategy called “stochastic send-on-delta” schedule is considered. For this transmission protocol, the probability of the current measurement \(y_k \) transmitted to the estimator is subjected to an analogous Gaussian-type distribution with mean value \(y_{rk} \) and covariance \(Y^{-1} \), where the communication rate is tuned by the parameter \(Y \). This schedule is written as:

\[\gamma_k := \begin{cases} 0, & \zeta_k \leq \varphi(y_k, y_{rk}), \\ 1, & \zeta_k > \varphi(y_k, y_{rk}), \end{cases} \] (S.8)

where

\[\varphi(y_k, y_{rk}) = \exp\left[-\frac{1}{2} (y_k - y_{rk})^T Y (y_k - y_{rk}) \right], \] (S.9)

The MMSE event-based estimator is derived in this section. Note that at time \(k \), \(y_{rk} \) is known by both the sensor scheduler and the remote estimator, and therefore it is treated as a constant in estimator design. To aid the derivations, we assume \(D = 0 \) in equation (2) of [1]; the case of \(D \neq 0 \) can be proved similarly. Note that \(D = 0 \) holds for the state space model of the MPDM system developed in [1, Section III-B]. We have the following result.

Theorem 1: For this schedule, \(x_k \) conditioned \(I_{k-1} \) is Gaussian distributed with mean \(\hat{x}_k \) and covariance \(P_{1k} \), and \(x_k \) conditioned on \(I_k \) is Gaussian distributed with mean \(\hat{x}_k \) and covariance \(P_k \), where \(\hat{x}_k \), \(x_k \) and \(P_{1k}, P_k \) satisfying the following recursive equations:
Time Update:

$$\hat{x}_k = A\hat{x}_{k-1} + Bu_{k-1},$$ \hspace{1cm} (S.10)

$$P^{-}_k = AP_{k-1}A^T + Q,$$ \hspace{1cm} (S.11)

Measurement Update:

$$K_k = P^{-}_k C^T [CP^{-}_k C^T + R + (1 - \gamma_k)Y^{-1}]^{-1},$$ \hspace{1cm} (S.12)

$$P_k = (I - K_k C) P^{-}_k,$$ \hspace{1cm} (S.13)

$$\hat{x}_k = \hat{x}_{k-1} + \gamma_k K_k(y_k - \hat{y}_k) + (1 - \gamma_k)K_k(y_{\tau_k} - \hat{y}_\tau_k),$$ \hspace{1cm} (S.14)

with initial condition

$$\hat{x}_{0} = 0, P^{-}_0 = \Sigma_0.$$ \hspace{1cm} (S.15)

Proof: Since $I_0 = \emptyset$, x_0 is Gaussian and (S.15) holds. We first consider the measurement update step. Assume that x_k conditioned on I_{k-1} is Gaussian with mean \hat{x}_{k-1} and covariance P^{-}_k. We consider two cases depending on whether the estimator receives y_k.

1) If $\gamma_k = 0$, then the estimator does not receive y_k. The joint conditional probability density function (pdf) of x_k and y_k is written as

$$f(x_k, y_k | I_k) = f(x_k, y_k | \gamma_k = 0, I_{k-1}) \hspace{1cm} (S.16)$$

where the second equality follows from the Bayes' theorem and the last one holds since γ_k depends only on y_k. By assumption, $f(x_k, y_k | I_{k-1})$ is a Gaussian distribution and

$$Pr(\gamma_k = 0 | y_k) = \exp\left[-\frac{1}{2}(y_k - y_{\tau_k})^T Y (y_k - y_{\tau_k})\right].$$ \hspace{1cm} (S.19)

In this way, we have

$$f(x_k, y_k | I_k) = \alpha_k \exp\left(-\frac{1}{2} \theta_k\right),$$ \hspace{1cm} (S.20)

with

$$\alpha_k = \frac{1}{Pr(\gamma_k = 0 | I_{k-1}) \sqrt{\det(\Phi_k)} (2\pi)^{m+n}}$$ \hspace{1cm} (S.21)

and

$$\theta_k = \begin{bmatrix} x_k - \hat{x}_{k-1} \\ y_k - \hat{y}_k \end{bmatrix}^T \Phi_k^{-1} \begin{bmatrix} x_k - \hat{x}_{k-1} \\ y_k - \hat{y}_k \end{bmatrix} + (y_k - y_{\tau_k})^TY (y_k - y_{\tau_k}),$$ \hspace{1cm} (S.22)

where Φ_k is the covariance of $[x_k^T, y_k^T]^T$ given I_{k-1} and satisfies

$$\Phi_k := \begin{bmatrix} P^{-}_k & P^{-}_k C^T \\ CP^{-}_k & CP^{-}_k C^T + R \end{bmatrix},$$ \hspace{1cm} (S.23)
Based on some matrix calculations for (S.22) and the matrix inversion lemma, one has

\[\Theta_k^{-1} = \begin{bmatrix} (P_k^-)^{-1} + C^T R^{-1} C & -C^T R^{-1} \\ -R^{-1} C & R^{-1} \end{bmatrix} \].

(S.24)

Based on some matrix calculations for (S.22) and the matrix inversion lemma, one has

\[\theta_k = \begin{bmatrix} x_k - \bar{x}_k \\ y_k - \bar{y}_k \end{bmatrix}^T \Theta_k^{-1} \begin{bmatrix} x_k - \bar{x}_k \\ y_k - \bar{y}_k \end{bmatrix} + c_k, \]

(S.25)

where

\[\bar{x}_k = \bar{x}_k + [C^T R^{-1} (R^{-1} + Y)^{-1} R^{-1} C - (P_k^-)^{-1} - C^T R^{-1} C]^{-1} C^T R^{-1} (R^{-1} + Y)^{-1} Y \bar{y}_k - y_{rk}, \]

(S.26)

\[\bar{y}_k = \bar{y}_k - [R^{-1} + Y^{-1} C ((P_k^-)^{-1} + C^T R^{-1} C)^{-1} C^T R^{-1} Y]^{-1} Y (\bar{y}_k - y_{rk}), \]

(S.27)

\[c_k = (\bar{y}_k - y_{rk})^T Y (R^{-1} + Y)^{-1} Y (\bar{y}_k - y_{rk}), \]

(S.28)

and

\[\Theta_k = \begin{bmatrix} \Theta_{xx,k} & \Theta_{xy,k} \\ \Theta_{xy,k}^T & \Theta_{yy,k} \end{bmatrix}, \]

(S.29)

with

\[\Theta_{xx,k} = P_k^- - P_k^- C^T (C P_k^- C^T + R + Y^{-1})^{-1} C P_k^-, \]

(S.30)

\[\Theta_{xy,k} = P_k^- C^T [I + (C P_k^- C^T + R) Y]^{-1}, \]

(S.31)

\[\Theta_{yy,k} = [(C P_k^- C^T + R)^{-1} + Y]^{-1}. \]

(S.32)

Thus,

\[f(x_k, y_k | I_k) = \alpha_k \exp \left(-\frac{1}{2} \theta_k \right) \]

(S.33)

\[= \alpha_k \exp \left(-\frac{1}{2} \begin{bmatrix} x_k - \bar{x}_k \\ y_k - \bar{y}_k \end{bmatrix}^T \Theta_k^{-1} \begin{bmatrix} x_k - \bar{x}_k \\ y_k - \bar{y}_k \end{bmatrix} + c_k \right) \]

(S.34)

\[= \alpha_k \exp \left(-\frac{1}{2} c_k \right) \exp \left(\frac{1}{2} \begin{bmatrix} x_k - \bar{x}_k \\ y_k - \bar{y}_k \end{bmatrix}^T \Theta_k^{-1} \begin{bmatrix} x_k - \bar{x}_k \\ y_k - \bar{y}_k \end{bmatrix} \right). \]

(S.35)

Since \(f(x_k, y_k | I_k) \) is a pdf,

\[\int_{\mathbb{R}^n} \int_{\mathbb{R}^m} f(x_k, y_k | I_k) \, dx_k \, dy_k = 1, \]

(S.36)

which implies that

\[\alpha_k \exp \left(-\frac{1}{2} c_k \right) = \frac{1}{\sqrt{\det(\Phi_k) (2\pi)^{m+n}}}. \]

(S.37)

As a result, \(x_k \) and \(y_k \) are jointly Gaussian given \(I_k \), which means that \(x_k \) is conditionally Gaussian with mean \(\bar{x}_k \) and covariance \(\Theta_{xx,k} \). Therefore, (S.13) and (S.14) hold when \(\gamma_k = 0 \).
2) If $\gamma_k = 1$, then the estimator receives y_k. Hence

$$f(x_k|\mathcal{I}_k) = f(x_k,y_k|\gamma_k = 1,\mathcal{I}_{k-1})$$

$$= \frac{\Pr(\gamma_k = 1|x_k,y_k,\mathcal{I}_{k-1})f(x_k|y_k,\mathcal{I}_{k-1})}{\Pr(\gamma_k = 1|y_k,\mathcal{I}_{k-1})}$$

$$= \frac{\Pr(\gamma_k = 1|y_k)f(x_k|y_k,\mathcal{I}_{k-1})}{\Pr(\gamma_k = 1|y_k)},$$

$$= f(x_k|y_k,\mathcal{I}_{k-1}).$$

(S.38)

(S.39)

(S.40)

(S.41)

The second equality is due to Bayes’ theorem and the third equality uses the conditional independence between γ_k and (\mathcal{I}_{k-1},x_k) given y_k. Since $y_k = Cx_k + v_k$ and x_k,v_k are conditionally independently Gaussian distributed, x_k and y_k are conditionally jointly Gaussian which implies that $f(x_k|\mathcal{I}_k)$ is Gaussian. Following the standard Kalman filtering,

$$f(x_k|\mathcal{I}_k) \sim N(\hat{x}_k^- + K_k(y_k - \hat{y}_k^-), P_k^- - K_kCP_k^-).$$

(S.42)

Finally we consider the time update. Assume that x_k conditioned on \mathcal{I}_k is Gaussian distributed with mean \hat{x}_k and covariance P_k.

$$f(x_{k+1}|\mathcal{I}_k) = f(Ax_k + Bu_k + w_k|\mathcal{I}_k).$$

(S.43)

Since x_k and w_k are conditionally mutually independent Gaussian and u_k is a deterministic input, we have

$$f(x_{k+1}|\mathcal{I}_k) \sim N(A\hat{x}_k + Bu_k, AP_kA^T + Q),$$

(S.44)

which completes the proof.

From the standard estimation theory [4], \hat{x}_k is the MMSE state estimate given the event-triggered measurement information \mathcal{I}_k.

REFERENCES

